第一范文网 - 专业文章范例文档资料分享平台

算法比较

来源:用户分享 时间:2025/8/22 7:51:51 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

神经网络是基于传统统计学的基础上的.传统统计学研究的内容是样本无穷大时的渐进理论,即当样本数据趋于无穷多时的统计性质,而实际问题中样本数据往往是有限的.因此,假设样本数据无穷多,并以此推导出的各种算法很难在样本数据有限时取得理想的应用效果.

而支持向量机则是基于统计学理论的基础上的,可以克服神经网络难以避免的问题.通过支持向量机在逼近能力方面与BP网络仿真结果的比较表明,支持向量机具有较强的逼近能力和泛化能力.

至于收敛速度,BP神经网络的速度比向量机要慢。尤其是层次较高的时候。 SVM有如下主要几个特点:

(1)非线性映射是SVM方法的理论基础,SVM利用内积核函数代替向高维空间的非线性映射;

(2)对特征空间划分的最优超平面是SVM的目标,最大化分类边际的思想是SVM方法的核心;

(3)支持向量是SVM的训练结果,在SVM分类决策中起决定作用的是支持向量。 (4)SVM 是一种有坚实理论基础的新颖的小样本学习方法。它基本上不涉及概率测度及大数定律等,因此不同于现有的统计方法。从本质上看,它避开了从归纳到演绎的传统过程,实现了高效的从训练样本到预报样本的“转导推理”,大大简化了通常的分类和回归等问题。

(5)SVM 的最终决策函数只由少数的支持向量所确定,计算的复杂性取决于支持向量的数目,而不是样本空间的维数,这在某种意义上避免了“维数灾难”。

(6)少数支持向量决定了最终结果,这不但可以帮助我们抓住关键样本、“剔除”大量冗余样本,而且注定了该方法不但算法简单,而且具有较好的“鲁棒”性。这种“鲁棒”性主要体现在: ①增、删非支持向量样本对模型没有影响; ②支持向量样本集具有一定的鲁棒性;

③有些成功的应用中,SVM 方法对核的选取不敏感 两个不足:

(1) SVM算法对大规模训练样本难以实施 由于SVM是借助二次规划来求解支持向量,而求解二次规划将涉及m阶矩阵的计算(m为样本的个数),当m数目很大时该矩阵的存储和计算将耗费大量的机器内存和运算时间。针对以上问题的主要改进有有J.Platt的SMO算法、T.Joachims的SVM、C.J.C.Burges等的PCGC、张学工的CSVM以及O.L.Mangasarian等的SOR算法 (2) 用SVM解决多分类问题存在困难

经典的支持向量机算法只给出了二类分类的算法,而在数据挖掘的实际应用中,一般要解决多类的分类问题。可以通过多个二类支持向量机的组合来解决。主要有一对多组合模式、一对一组合模式和SVM决策树;再就是通过构造多个分类器的组合来解决。主要原理是克服SVM固有的缺点,结合其他算法的优势,解决多类问题的分类精度。如:与粗集理论结合,形成一种优势互补的多类问题的组合分类器。 多层前向BP网络的优点:

①网络实质上实现了一个从输入到输出的映射功能,而数学理论已证明它具有实现任何复杂非线性映射的功能。这使得它特别适合于求解内部机制复杂的问题;

②网络能通过学习带正确答案的实例集自动提取“合理的”求解规则,即具有自学习能力; ③网络具有一定的推广、概括能力。 多层前向BP网络的问题:

①BP算法的学习速度很慢,其原因主要有:

a 由于BP算法本质上为梯度下降法,而它所要优化的目标函数又非常复杂,因此,必然会出现“锯齿形现象”,这使得BP算法低效;

b 存在麻痹现象,由于优化的目标函数很复杂,它必然会在神经元输出接近0或1的情况下,出现一些平坦区,在这些区域内,权值误差改变很小,使训练过程几乎停顿;

c 为了使网络执行BP算法,不能用传统的一维搜索法求每次迭代的步长,而必须把步长的更新规则预先赋予网络,这种方法将引起算法低效。 ②网络训练失败的可能性较大,其原因有:

a 从数学角度看,BP算法为一种局部搜索的优化方法,但它要解决的问题为求解复杂非线性函数的全局极值,因此,算法很有可能陷入局部极值,使训练失败; b 网络的逼近、推广能力同学习样本的典型性密切相关,而从问题中选取典型样本实例组成训练集是一个很困难的问题。

③难以解决应用问题的实例规模和网络规模间的矛盾。这涉及到网络容量的可能性与可行性的关系问题,即学习复杂性问题;

④网络结构的选择尚无一种统一而完整的理论指导,一般只能由经验选定。为此,有人称神经网络的结构选择为一种艺术。而网络的结构直接影响网络的逼近能力及推广性质。因此,应用中如何选择合适的网络结构是一个重要的问题;

⑤新加入的样本要影响已学习成功的网络,而且刻画每个输入样本的特征的数目也必须相同;

⑥网络的预测能力(也称泛化能力、推广能力)与训练能力(也称逼近能力、学习能力)的矛盾。一般情况下,训练能力差时,预测能力也差,并且一定程度上,随训练能力地提高,预测能力也提高。但这种趋势有一个极限,当达到此极限时,随训练能力的提高,预测能力反而下降,即出现所谓“过拟合”现象。此时,网络学习了过多的样本细节,而不能反映样本内含的规律。

支持向量机是一种功能强大的分类器,一旦得到了正确的参数,这种分类器的执行效果,与本书中所提及的其他任何一种分类方法相比,有可能会不相上下或更胜一筹。而且在接受训练之后,它们在对新的观测数据进行分类时速度极快,这是因为分类时只须判断坐标点位于分界线的哪一侧即可。通过将分类输入(categorical inputs)转换成数值输入,可以令支持向量机同时支持分类数据和数值数据。 支持向量机的一个缺点在于,针对每个数据集的最佳核变换函数及其相应的参数都是不一样的,而且每当遇到新的数据集时都必须重新确定这些函数及其参数。在可能的取值范围内进行循环遍历会有助于这一问题的解决,但是这要求我们有足够大的数据集来完成可靠的交叉检验。一般而言,SVM更适合于那些包含大量数据的问题;而其他方法,如决策树,则更适合于小规模的数据集,并且这些方法还能从数据集中得到很有价值的信息。

搜索更多关于: 算法比较 的文档
算法比较.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c1i2hz2zftd55mbv22qpa_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top