-------------¾«Ñ¡Îĵµ-----------------
¸ßµÈÊýѧÆÚÄ©¸´Ï°
µÚ¾ÅÕ ¶àÔªº¯Êý΢·Öѧ
Ò»¡¢ÄÚÈÝÒªÇó
1¡¢»áÇó¼òµ¥¶þÔªº¯Êý¶¨ÒåÓò 2¡¢»áÇó¶à¶þÔªº¯Êý±í´ïʽºÍÖµ 3¡¢»áÇó¼òµ¥¶þÔªº¯ÊýµÄ¼«ÏÞ
4¡¢ÕÆÎÕ¶þÔªº¯ÊýÆ«µ¼Êý¶¨Ò壬ÐÔÖÊ£¬ÄÜȷʶ±ð¶þÔªº¯ÊýÆ«µ¼Êý¶¨ÒåÐÎʽ£¬µÃ³öÆ«µ¼ÊýÕýÈ·±í´ï
5¡¢»áÇó¶þÔªº¯ÊýÆ«µ¼ÊýÖµ£ºÇ󯫵¼º¯Êý£¬´úÈëµãÇóÖµ 6¡¢»áÇó¶þÔªº¯Êý΢·ÖÖµ£ºÇ󯫵¼º¯Êý£¬´úÈëµãÇó΢·Ö±í´ïʽ 7¡¢»á°´Ò»Ôªº¯ÊýÇóµ¼·¨ÔòÇóÖ±½Óº¯ÊýµÄÆ«µ¼Êý 8¡¢»áÓÉÂÖ»»¶Ô³ÆÐÔÈ·¶¨¶àÔªº¯Êý¶Ô³ÆÔªµ¼Êý 9¡¢»áÓÃÁ´Ê½¹æÔòÇó³éÏóÐÎʽ¶àÔªº¯ÊýµÄÆ«µ¼Êý 10¡¢»áÇó¶àÔªº¯Êýȫ΢·Ö 11¡¢»áÇó¶àÔªÒþº¯ÊýµÄÆ«µ¼Êý
12¡¢»áÇó¶þÔªº¯Êýפµã£¬Åж¨¶þÔªº¯Êý¼«ÖµµÄ´æÔÚÐÔ 13¡¢Äܹ۲ì³ö¼òµ¥¶àÔªº¯Êý¼«ÖµÇé¿ö
14¡¢ÄÜÓ¦ÓöàÔªº¯ÊýÇó¼«Öµ·½·¨½â¾ö¼òµ¥Ó¦ÓÃÎÊÌâ 15¡¢»áÇó¿Õ¼äÇúÃæµÄÇÐÆ½Ãæ¡¢·¨Ïß·½³Ì 16¡¢»áÇó¿Õ¼äÇúÏßµÄÇÐÏß¡¢·¨Æ½Ãæ·½³Ì 17¡¢»áÇó¶àÔªº¯ÊýµÄ·½Ïòµ¼Êý
¿É±à¼
-------------¾«Ñ¡Îĵµ-----------------
18¡¢»áÇó¶àÔªº¯ÊýµÄÌݶÈ
¶þ¡¢ÀýÌâϰÌâ
y1¡¢¶þÔªº¯Êýz?arcsinµÄ¶¨ÒåÓòÊÇ( )
x A.{(x,y)||y|?|x|} B. {(x,y)||y|?|x|x?0} C. {(x,y)||y|?|x|x?0} D. {(x,y)||y|?|x|x?0}
½â£ºÊ¹º¯Êýz?arcsinÈÝÒªÇó1£©
2¡¢º¯Êýf(x,y)?ln(x?y)?yyÓÐÒâÒ壬ֻҪ||?1,x?0£¬¼´|y|?|x|,x?0£¬ËùÒÔ£¬Ñ¡B. £¨ÄÚxx1µÄ¶¨ÒåÓòΪ £»
x2?y2122x?y?0,x?y?0£¬ËùÒÔÌîÓÐÒâÒ壬ֻҪ22x?y½â£ºÊ¹º¯Êýf(x,y)?ln(x?y)?{(x,y)|x?y?0,x2?y2?0}£¨ÄÚÈÝÒªÇó1£©
3¡¢Éèf(x?y,x?y)?x?y,Ôòf(x,y)?( ).
(A) x?y (B) x?y (C) (x?y) (D) xy ½â£ºÁîu?x?y,v?x?y£¬Ôòx?2222222u?vu?v£¬ÓÚÊÇ ,y?22f(x?y,x?y)?x2?y2?f(u,v)?uv
¼´Óɺ¯ÊýÓë×Ô±äÁ¿¼ÇºÅѡȡÎÞ¹ØÐÔÓÐf(x,y)?xy¡£ËùÒÔÑ¡D¡££¨ÄÚÈÝÒªÇó2£©
x2?y24¡¢Éèf(x,y)?£¬Ôòf(2,?3)? £»
2xy½â£ºf(2,?3)?5¡¢
4?91313??£¬ËùÒÔÌî?¡££¨ÄÚÈÝÒªÇó2£© ?121212(x,y)?(0,0)limxy?1?1?( )£»
xyA.
11 B. C. 1 D. 0
42¿É±à¼
-------------¾«Ñ¡Îĵµ-----------------
½â£º
(x,y)?(0,0)limxy?1?1(xy?1?1)?(xy?1?1)11?lim?lim?
xyxy?(xy?1?1)xy?1?12(x,y)?(0,0)(x,y)?(0,0)ËùÒÔÑ¡A¡££¨ÄÚÈÝÒªÇó3£© 6¡¢
sinxy? £»
(x,y)?(0,0)xlimsinxysinxysinxy?lim[?y]?lim?limy?0
(x,y)?(0,0)(x,y)?(0,0)(x,y)?(0,0)xxyxy(x,y)?(0,0)lim½â£º
ËùÒÔÌî0¡££¨ÄÚÈÝÒªÇó3£© 7¡¢
sinxy? £»
(x,y)?(2,0)ylimsinxysinxy?lim?limx?2£¬ËùÒÔÌî2¡££¨ÄÚÈÝÒªÇó3£©
(x,y)?(2,0)(x,y)?(2,0)yxy(x,y)?(2,0)lim½â£º
f(0,0)?f(2x,0)? ( )£»
x?0x1?1???A£®fx(0,0) B£®?fx(0,0) C£®?2fx(0,0) D£®2fx(0,0)
22f(0,0)?f(2x,0)f(2x,0)?f(0,0)½â£ºÓÉÆ«µ¼Êý¶¨Ò壬lim??2lim??2fx?(0,0)
x?0x?0x2x8¡¢º¯Êý
f(x, y)ÔÚµã(0, 0)´¦´æÔÚÆ«µ¼Êý£¬ÔòlimËùÒÔÑ¡C¡££¨ÄÚÈÝÒªÇó4£© 9¡¢ º¯ÊýA£®
f(x, y)ÔÚµã(0, 0)´¦´æÔÚÆ«µ¼Êý£¬Ôòlimy?0f(0,0)?f(0,y)? ( )£»
2y1?1???fy(0,0) B£®?fy(0,0) C£®?2fy(0,0) D£®2fy(0,0)
22y?0½â£ºÓÉÆ«µ¼Êý¶¨Ò壬limf(0,0)?f(0,y)1f(0,y)?f(0,0)1??lim??fy?(0,0)
2y2y?0y2ËùÒÔÑ¡B¡££¨ÄÚÈÝÒªÇó4£©
10¡¢ º¯Êý( )£»
A£®fx?(x0,y0) B£®?fx?(x0,y0) C£®fy?(x0,y0) D£®?fy?(x0,y0) ½â£ºÓÉÆ«µ¼Êý¶¨Ò壬
¿É±à¼
f(x, y)ÔÚµã(x0, y0)´¦´æÔÚÆ«µ¼Êý£¬Ôòlim?x?0f(x0,y0)?f(x0??x,y0)?
?x-------------¾«Ñ¡Îĵµ-----------------
?x?0limf(x0,y0)?f(x0??x,y0)f(x0??x,y0)?f(x0,y0)?lim?fx?(x0,y0) ?x?0?x??xËùÒÔÑ¡A¡££¨ÄÚÈÝÒªÇó4£© 11¡¢º¯Êý
f(x, y)ÔÚµã(x0, y0)´¦Æ«µ¼Êý´æÔÚÊÇf(x, y)ÔÚµã(x0, y0)´¦Á¬ÐøµÄ( )£»
A£®³ä·Ö±ØÒªÌõ¼þ B£®±ØÒªÌõ¼þ C£®³ä·ÖÌõ¼þ D£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ ½â£ºÑ¡D¡££¨ÄÚÈÝÒªÇó4£©
12¡¢É躯Êýf(x,y)?x2?xy£¬Ôòfy?(1,1)?( ). (A) 1 (B) 2 (C) ½â£ºfy?(x,y)?1 (D) 3 21£¬ËùÒÔÑ¡C¡££¨ÄÚÈÝÒªÇó5£© 2x2y£¬ËùÒÔfy?(1,1)?y2?2z?( ). 13¡¢Éèz?£¬Ôò
x?x?y(1,?1)(A) ?2 (B) ?1 (C) 2 (D) 1
?zy2?2z2y?2z??2,??2£¬ËùÒÔ?2£¬ËùÒÔÑ¡C¡£½â£º£¨ÄÚÈÝÒªÇó5£© ?xx?x?yx?x?y(1,?1)
14¡¢z?ln(1?x?y)£¬Ôòdz22|x?1y?2?
½â£º
?z2x?z2y?z1?z2?,?|?,|?£¬ËùÒÔ£¬£¬¹Ê x?1x?1?x1?x2?y2?y1?x2?y2?xy?23?yy?231212dz|x?1?dx?dy£¬ËùÒÔÌîdz|x?1?dx?dy¡££¨ÄÚÈÝÒªÇó6£©
3333y?2y?215¡¢Éèz?½â£º
1ln(1?x2?y2)£¬Ôòdz|(1,1)? 2?zx?zy?z1?z1?,?|?,|?£¬ËùÒÔ£¬£¬¹Ê x?1x?1?x1?x2?y2?y1?x2?y2?xy?13?yy?131111dz|x?1?dx?dy£¬ËùÒÔÌîdz|x?1?dx?dy¡££¨ÄÚÈÝÒªÇó6£©
3333y?1y?1¿É±à¼
Ïà¹ØÍÆ¼ö£º