(2),
由①得:x<1;由②得:x≥﹣, ∴不等式组的解集为﹣≤x<1,
,
则不等式组的整数解为﹣1,0. 点评: 此题考查了解不等式组.
8. (2014?江苏徐州,第20题5分) (2)解不等式组:
.
考点: 解一元一次不等式组.
分析: (2)分别求出各不等式的解集,再求出其公共解集即可. 解答:解:(2)
,
由①得,x≥0,由②得,x<2, 故此不等式组的解集为:0≤x<2.
点评: 本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
9.(2014?四川内江,第27题,12分)某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元. (1)今年5月份A款汽车每辆售价多少万元?
(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?
(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利? 考点: 分式方程的应用;一元一次不等式组的应用 分析: (1)求单价,总价明显,应根据数量来列等量关系.等量关系为:今年的销售数量=去年的销售数量. (2)关系式为:99≤A款汽车总价+B款汽车总价≤105. (3)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可;对公司更有利,因为A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,所以要多进B款. 解答: 解:(1)设今年5月份A款汽车每辆售价m万元.则: , 解得:m=9. 经检验,m=9是原方程的根且符合题意. 答:今年5月份A款汽车每辆售价m万元; (2)设购进A款汽车x量.则: 99≤7.5x+6(15﹣x)≤105. 解得:≤x≤10. 因为x的正整数解为3,4,5,6,7,8,9,10, 所以共有8种进货方案; (3)设总获利为W元.则: W=(9﹣7.5)x+(8﹣6﹣a)(15﹣x)=(a﹣0.5)x+30﹣15a. 当a=0.5时,(2)中所有方案获利相同. 此时,购买A款汽车3辆,B款汽车12辆时对公司更有利. 点评: 本题考查分式方程和一元一次不等式组的综合应用,找到合适的等量关系及不等关系是解决问题的关键. 10.(2014?四川南充,第23题,8分)今年我市水果大丰收,A、B两个水果基地分别收获水果380件、320件,现需把这些水果全部运往甲、乙两销售点,从A基地运往甲、乙两销售点的费用分别为每件40元和20元,从B基地运往甲、乙两销售点的费用分别为每件15元和30元,现甲销售点需要水果400件,乙销售点需要水果300件.
(1)设从A基地运往甲销售点水果x件,总运费为w元,请用含x的代数式表示w,并写出x的取值范围;
(2)若总运费不超过18300元,且A地运往甲销售点的水果不低于200件,试确定运费最低的运输方案,并求出最低运费.
分析:(1)表示出从A基地运往乙销售点的水果件数,从B基地运往甲、乙两个销售点的水果件数,然后根据运费=单价×数量列式整理即可得解,再根据运输水果的数量不小于0列出不等式求解得到x的取值范围;
(2)根据一次函数的增减性确定出运费最低时的运输方案,然后求解即可.
解:(1)设从A基地运往甲销售点水果x件,则从A基地运往乙销售点的水果(380﹣x)件, 从B基地运往甲销售点水果(400﹣x)件,运往乙基地(x﹣80)件, 由题意得,W=40x+20(380﹣x)+15(400﹣x)+30(x﹣80), =35x+11000,
即W=35x+11000,∵,∴80≤x≤380,即x的取值范围是80≤x≤380;
(2)∵A地运往甲销售点的水果不低于200件,∴x≥200,∵35>0, ∴运费W随着x的增大而增大,
∴当x=200时,运费最低,为35×200+11000=18000元,
此时,从A基地运往甲销售点水果200件,从A基地运往乙销售点的水果180件, 从B基地运往甲销售点水果200件,运往乙基地120件.
点评:本题考查了一次函数的应用,一元一次不等式组的应用,读懂题目信息,准确表示出从A、B两个基地运往甲、乙两个销售点的水果的件数是解题的关键.
11.(2014?四川宜宾,第20题,8分)在我市举行的中学生安全知识竞赛中共有20道题.每一题答对得5分,答错或不答都扣3分. (1)小李考了60分,那么小李答对了多少道题?
(2)小王获得二等奖(75~85分),请你算算小王答对了几道题? 考点: 分析: 一元一次不等式组的应用;一元一次方程的应用 (1)设小李答对了x道题,则有(20﹣x)道题答错或不答,根据答对题目的得分减去答错或不答题目的扣分是60分,即可得到一个关于x的方程,解方程即可求解; (2)先设小王答对了y道题,根据二等奖在75分~85分之间,列出不等式组,求出y的取值范围,再根据y只能取正整数,即可得出答案. 解答: 解:(1)设小李答对了x道题. 依题意得 5x﹣3(20﹣x)=60. 解得x=15. 答:小李答对了16道题. (2)设小王答对了y道题,依题意得: , 解得:≤y≤,即 ∵y是正整数, ∴y=17或18, 答:小王答对了17道题或18道题. 点评: 本题考查了一元一次方程的应用.利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.
12.(2014?甘肃白银,第20题6分)阅读理解: 我们把如果有
称作二阶行列式,规定他的运算法则为
>0,求x的解集.
=ad﹣bc.如
=2×5﹣3×4=﹣2.
考点:解一元一次不等式. 专题:阅读型. 分析:首先看懂题目所给的运算法则,再根据法则得到2x﹣(3﹣x)>0,然后去括号、移项、 合并同类项,再把x的系数化为1即可. 解答:解:由题意得2x﹣(3﹣x)>0, 去括号得:2x﹣3+x>0, 移项合并同类项得:3x>3, 把x的系数化为1得:x>1. 点评:此题主要考查了一元一次不等式的解法,关键是看懂题目所给的运算法则,根据题意 列出不等式. 13.(2014?广州,第17题9分) 解不等式:
【考点】不等式解法
【分析】利用不等式的基本性质,将两边不等式同时减去
,再同时加上,再除以,不
,并在数轴上表示解集.
等号的方向不变.注意在数轴上表示时,此题是小于等于号,应是实心点且方向向左. 【答案】解:移项得,
合并同类项得,
, ,
相关推荐: