SPSS软件聚类分析过程的图文解释及结果的全面分析
SPSS聚类分析过程
聚类的主要过程一般可分为如下四个步骤: 1.数据预处理(标准化)
2.构造关系矩阵(亲疏关系的描述) 3.聚类(根据不同方法进行分类) 4.确定最佳分类(类别数)
SPSS软件聚类步骤
1. 数据预处理(标准化)
→Analyze →Classify →Hierachical Cluster Analysis →Method 然后从对话框中进行如下选择
从Transform Values框中点击向下箭头,此为标准化方法,将出现如下可选项,从中选一即可:
标准化方法解释:None:不进行标准化,这是系统默认值;Z Scores:标准化变换;Range –1 to 1:极差标准化变换(作用:变换后的数据均值为0,极差为1,且|x去了量纲的影响;在以后的分析计算中可以减少误差的产生。
*
ij|<1,消
);Range 0 to 1(极
差正规化变换 / 规格化变换); 2. 构造关系矩阵
在SPSS中如何选择测度(相似性统计量): →Analyze →Classify →Hierachical Cluster Analysis →Method 然后从对话框中进行如下选择
常用测度(选项说明):Euclidean distance:欧氏距离(二阶Minkowski距离),用途:聚类分析中用得最广泛的距离;Squared Eucidean distance:平方欧氏距离;Cosine:夹角余弦(相似性测度;Pearson correlation:皮尔逊相关系数;
3. 选择聚类方法
SPSS中如何选择系统聚类法 常用系统聚类方法
a)Between-groups linkage 组间平均距离连接法
方法简述:合并两类的结果使所有的两两项对之
相关推荐: