∴,
∵CE=4CD, ∴AE=4BD, ∵A(4,1), ∴AE=4, ∴BD=1, ∴xB=1, ∴yB==4,
∴B(1,4),
将A(4,1),B(1,4)代入y=kx+b, 得,
,
解得,k=-1,b=5, ∴yAB=-x+5,
设直线AB与x轴交点为F, 当x=0时,y=5;当y=0时x=5, ∴C(0,5),F(5,0), 则OC=OF=5,
∴△OCF为等腰直角三角形, ∴CF=
OC=5
,
则当OM垂直CF于M时,由垂线段最知可知,OM有最小值, 即OM=CF=
.
【解析】
(1)将点A(4,1)代入y=,即可求出m的值,进一步可求出反比例函数解析式;
(2)先证△CDB∽△CEA,由CE=4CD可求出BD的长度,可进一步求出点B的坐标,以及直线AC的解析式,直线AC与坐标轴交点的坐标,可证直线AC与坐标轴所围成和三角形为等腰直角三角形,利用垂线段最短可求出OM长度的最小值.
本题考查了反比例函数的性质,相似三角形的性质,垂线段最短等定理,解题关键是能够熟练运用反比例函数的性质及相似三角形的性质.
23.【答案】证明:(1)∵C是
∴
,
的中点,
∵AB是⊙O的直径,且CF⊥AB, ∴∴
, ,
∴CD=BF,
在△BFG和△CDG中, ∵
,
∴△BFG≌△CDG(AAS);
(2)如图,过C作CH⊥AD于H,连接AC、BC,
∵
,
∴∠HAC=∠BAC, ∵CE⊥AB, ∴CH=CE, ∵AC=AC,
∴Rt△AHC≌Rt△AEC(HL), ∴AE=AH,
∵CH=CE,CD=CB,
∴Rt△CDH≌Rt△CBE(HL), ∴DH=BE=2,
∴AE=AH=2+2=4, ∴AB=4+2=6,
∵AB是⊙O的直径, ∴∠ACB=90°, ∴∠ACB=∠BEC=90°, ∵∠EBC=∠ABC, ∴△BEC∽△BCA, ∴
,
2=12, ∴BC2=AB?BE=6×∴BF=BC=2【解析】
.
(1)根据AAS证明:△BFG≌△CDG;
(2)如图,作辅助线,构建角平分线和全等三角形,证明Rt△AHC≌Rt△AEC
(HL),得AE=AH,再证明Rt△CDH≌Rt△CBE(HL),得DH=BE=2,计算AE和AB的长,证明△BEC∽△BCA,列比例式可得BC的长,就是BF的长. 此题考查了相似三角形的判定与性质、圆周角定理、垂径定理、三角形全等的性质和判定以及勾股定理.第二问有难度,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
24.【答案】解:(1)将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平
移2个单位,得到的抛物线解析式为y=a(x-1)2-2, ∵OA=1,
∴点A的坐标为(-1,0),代入抛物线的解析式得,4a-2=0, ∴
,
∴抛物线的解析式为y=,即y=.
令y=0,解得x1=-1,x2=3, ∴B(3,0), ∴AB=OA+OB=4, ∵△ABD的面积为5, ∴
=5,
∴yD=,代入抛物线解析式得,
,
解得x1=-2,x2=4, ∴D(4,),
设直线AD的解析式为y=kx+b, ∴
,解得:
,
∴直线AD的解析式为y=.
(2)过点E作EM∥y轴交AD于M,如图,设E(a,),则M(a,),
∴=,
∴S△ACE=S△AME-S△CME===,
=,
∴当a=时,△ACE的面积有最大值,最大值是,此时E点坐标为().
(3)作E关于x轴的对称点F,连接EF交x轴于点G,过点F作FH⊥AE于点H,交轴于点P,
∵E(
),OA=1,
∴AG=1+=,EG=,
∴,
∵∠AGE=∠AHP=90°∴sin
,
∴,
∵E、F关于x轴对称,
∴PE=PF,
∴PE+AP=FP+HP=FH,此时FH最小,
∵EF=,∠AEG=∠HEF,
∴=,
∴.
相关推荐: