作业1.1
1.limsinxx?sinx??说明理由,并计算lim
x??x??x2x?sinx22.计算下列极限:
(1)lim(n?3n?n);(2)limn??12x?5?3(1?2???n);(3); limn??n2x?2x2?5x?61322?3);(5)lim(x?5x?x); (6)lim(x?x?x);
x?1x?1x???x???x?13ex?1|x|nnnn?);(7)lim(x(8)lim3?4?5;
x??e?1n??x2n(9)lim(1?a?a???a)(?1?a?1).
(4)lim(n???
作业1.2
1.计算下列极限:
sinkxtan3xsin2x1?cos2x(k?0);(2)lim;(3)lim; (4)lim;
x?0x?0x?0sin5xx?0xxxsinxxsinxn(5)lim2sinn(x?0);(6)lim.
n??x??2??x(1)lim2.计算下列极限:
1kxx?1x);(1)lim(1?)(k?0);(2)lim((3)lim(1?x)x;
x?0x??x??x?1x1115x?32)x?1. (4)lim(1?sinx)x;(5)lim(cosx)x; (6)lim(x?0x?0x?1x?1n!u3.设un?n,计算limn?1.
n??unn1111????]?4.利用夹逼法证明:limn[.
n??(n?1)2(n?2)2(n?n)225.设x1?1,xn?1?6?xn(n?1,2,?),证明数列{xn}极限存在. 6.设x1?1,xn?1?6?xn(n?1,2,?),证明limxn?2.
n??
作业1.3
1.当x?0时,2x?x与x?x相比,哪一个是高阶无穷小? 2.当x?1时,无穷小1?x和(1)1?x,(2)3.计算下列极限:
32231(1?x2)是否同阶?是否等价? 2tan3x2x2?311?cosxsin(1)lim;(2)lim2;(3)lim;
x?0x??x?02x3x?2x(x?2x)sinxtanx?sinx. lim2x?03(1?x?1)(1?sinx?1)作业1.4
1
?x2,|x|?11.讨论函数f(x)??的连续性,若有间断点,判别其类型.
2?x,|x|?1?x?1?12.定义y(0)为何值,使函数y?在点x?0处连续?
xx? 3.已知函数y?的间断点为x?k?和x?k??(k?0,?1,?2,?). 试判
tanx2别它们的类型. 4.已知函数y?1?sin的间断点为x?0和x?1. 试判别它们的类型,若是可去间x2?xx断点,则补充函数的定义使它连续.
1?x2nx的连续性,若有间断点,判别其类型. 5.讨论函数f(x)?limn??1?x2n作业1.5
x3?3x2?x?31.求函数f(x)?的连续区间,并求limf(x),limf(x)及limf(x). 2x?0x??3x?2x?x?62.求下列极限:
ln(1?x2)1?tanx?1?sinx(1)lim; (2)lim.
2x?0secx?cosxx?0x1?sinx?xx?0?x?a,?3.设f(x)??ln(1?2x). 应当怎样选择数a,使得f(x)成为在(??,??)内的
,x?0??1?x?1连续函数.
x2?ax?b?6,求a,b的值. 4.已知limx?1x2?11x?15.求函数f(x)?arctan?的间断点,并判别其类型.
xln|x|【 x??1为无穷间断点,x?0为跳跃间断点,x?1为可去间断点. 】
作业1.6
1.证明方程x?3?1至少有一个根介于1和2之间. 2.证明方程sinx?x?1?0在开区间(?3)内至少有一个根. 223.若f(x)在[a,b]上连续,a?x1?x2???xn?b,则在(a,b)内至少有一点?,使
f(x1)?f(x2)???f(xn)f(?)?.
n
?,? 2
相关推荐: