第一范文网 - 专业文章范例文档资料分享平台

黄金分割及比例线段

来源:用户分享 时间:2025/5/21 22:11:13 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

1∶2。若△ABC的面积为32,△CDE的面积为2,则△CFG的面积S等于( )

A.6 B.8 解法1:由DE∥AB∥FG知,

图2

C.10

D.12

图3

△CDE∽△CAB,△CDE∽△CFG,

S△CDE2CD2?), 所以=(S△CAB32CACD1? CA4FD1?, 又由题设知,

FA2FD1?, 所以

AD31131FD?AD?×AC?AC,

3344故 FD=DC

S△CDE121?()?, 于是

S△CFG24

所以

S△CFG?4S△CDE?8

以上是由DE∥AB∥FG,及相似三角形对应高的比等于相似比,把FG到DE、AB

的距离之比1:2,转到DF:AF=1:2,从而知△CDE和△CFG边长的相似比为1:2。

解法2:因为DE∥AB∥FG, 所以 △CDE∽△CAB S△CDE21CD2???() S△CAB3216CACD1? CA4CD1? 于是

AD3作梯形ABGF的中位线KH,由题设知 所以 DF=FK=AK, CD=DF S△CDE11?()2? S△CFG24于是 S△CFG?8

FD1? FA2以上是由FG到DE、AB的距离之比为1:2,作梯形ABGF的中位线KH,从而知D是AC的四等分点。得到△CDE和△CFG的相似比。

例3.如图4所示,平行四边形DEFG内接于△ABC,已知△ADE、△EFC、△DBG的面积分别为1、2.8和1.2,求平行四边形DEFG的面积。

图4

解:过D作DH∥CE交BC于点H, 由DE∥HC,DH∥EC,

可知四边形DECH为平行四边形。 因为DH=EC,

所以△DGH≌△EFC, 即 S△DGH=S△EFC, 于是 S△BDH=4

因为 DH∥AE,DE∥BH, 故△ADE∽△DBH

AD2S△ADE则( )?DBS△BDHAD1? BD2S△ADE1?()2 S△ABC3

于是 S△ABC?9S△ADE?9

从而 S平行四边形DEFG=S△ABC-S△ADE-S△EFC-S△DBG =9-1-2.8-1.2=4

这是由DE∥BC,及等高的两个三角形的等积变形,再转化到两个三角形的相似。

搜索更多关于: 黄金分割及比例线段 的文档
黄金分割及比例线段.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c1km216tu4y4mn0g1mmp04oweh0q68m00oos_5.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top