精准培优专练
2020届高三好教育精准培优专练
培优点十一 数列求通项公式
一、公式法
例1:数列?a2n?的前n项和Sn?2n?n?n?N*?,则an?( )
A.an?2n?1 B.an?2n?1
C.an?4n?1
D.an?3n?2【答案】C
【解析】因为数列?aS2n?的前n项和n?2n?n,
所以当n?2时,a?S22n?Snn?1?2n?n?[2(n?1)?(n?1)]?4n?1,
当n?1时,a1?S1?3,符合上式,所以综上an?4n?1.
二、构造法
例2:已知数列{an}满足a1?1,an?1?3an?2. (1)求证:数列?an?1?是等比数列; (2)求数列{an}的通项公式.
【答案】(1)证明见解析;(2)an?1n?2?3?1.
【解析】(1)证明:∵an?1?3an?2,∴an?1?1?3?an?1?. 又∵a1?1?2,∴?an?1?是等比数列,首项为2,公比为3.
(2)由(1)可得a?2?3n?1,解得an?1n?1n?2?3?1.
三、累加累乘法
1
精准培优专练
例3:已知数列?an?满足a2?6,
an?n(n?N*),求数列?an?的通项公式.
an?1?an【答案】an?3n. 【解析】a2?6,
ana?n?n?N*?,
n?1?an∴aan?1n?1?3且nan?1??n?1?an,即
a?1, nn由累乘法得an?ana?an?1??a2?ann?121??????a1?na1?3n,n?1an?2a1n?1n?21∴an?1?an?3?n?1??3n?3,
则数列?an?是首项为3,公差为3的等差数列,通项公式为an?3n.
对点增分集训
一、选择题
1.已知数列?a?满足aann1?1,an?1?n?2,则a10?( )
A.1024 B.1023 C.2048 D.2047
【答案】B
【解析】根据题意可得ann?1?an?2,
∴2(1?29(a(a2)2?a1)?3?a2)?????(a10?a9)?2?2?????29?1?2?1022,
∴a10?a1?1022,∴a10?1023.
2.已知数列{a项和S2n}的前nn?n?6n,第k项满足5?ak?8,则k?(A.9 B.8 C.7 D.6
【答案】C
【解析】n?1时,a1?S1??5;n?2时,an?Sn?Sn?1?2n?7,
)
2
精准培优专练
∴an?2n?7,∴5?2k?7?8,解得k?7,故选C. 3.设Sn是数列{an}的前n项和,且Sn?11?an,则an?( ) 22C.2?()?A.?()1132n?1 B.
12n?1?() 2313n1 3D.()
13n【答案】D
【解析】由题意,得S1?a1?111?a1,所以a1?, 223a11111?an??an?1,即n?,
an?132222又当n?2时,Sn?Sn?1?an?所以数列{an}是首项为
111n,公比为的等比数列,所以an?(),故选D. 3331n4.在数列?an?中,a1?2,an?1?an?ln(1?),则an?( ) A.2?lnn 【答案】A
【解析】由题意可得a2?a1?ln2,a3?a2?lnB.2?ln(n?1)
C.2?nlnn
D.1?n?lnn
3n,???,an?an?1?ln, 2n?1将以上n?1个等式两边相加可得an?a1?lnnn?12????2?lnn,应选A.
n?1n?215.已知数列?a1?中,a1?1,an?1?2an?1?n?N?,Sn为其前n项和,则a6的值为( ) A.63 【答案】A
【解析】由条件可得an?1?1?2(an?1),即?an?1?是以a1?1?2为首项,以2为公比的等比数列,
n?1nn6所以an?1?2?2?2,an?2?1,a6?2?1?63,故选A.
B.31 C.64 D.32
6.已知数列?an?的前n项和为Sn,a1?1,an?1?3Sn?2,则a4?( ) A.64
B.80 C.256 D.320
3
精准培优专练
【答案】B
【解析】∵an?1?3Sn?2,∴当n?2时,an?3Sn?1?2,an?1?an?3(Sn?Sn?1), 即an?1?4an,
n?1?1,a?3a?2?5?4aa?又2,a4?80,故应选B. ?11,∴nn?2?5?4,n?27.数列?an?中,a1?1,an?1?an?1(n?N*),则a10?( )
3n(n?1)C.
A.
35 27B.
8 2713 10D.
3 10【答案】C
【解析】由题意得a1?1,an?1?an?所以a10?a1?(a2?a1)?(a3?a2)?1111?(?),
3n(n?1)3nn?1?(a10?a9)
111111?1??[(1?)?(?)?(?)?3223341113?(?)]?,故选C. 910101an?1?6?n?2?,若对任意的n?N*,28.已知数列?an?的前n项和为Sn,且a1?5,an??1?p?Sn?4n??3恒成立,则实数p的取值范围为( )
A.?2,3 【答案】B
?B.2,3
??C.?2,4 ?D.2,4
??1?an?4?, 21则数列?an?4?是首项为a1?4?1,公比为?的等比数列,
2【解析】由数列的递推公式可得:an?1?4???1?an?4?1?????2?n?1?1?,an?????2?nn?1?4,
2?1?分组求和可得Sn?[1????]?4n,
3?2?
4
相关推荐: