第一范文网 - 专业文章范例文档资料分享平台

与时间序列相关的S命令及其统计量的解析

来源:用户分享 时间:2025/6/17 9:10:48 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

与时间序列相关的STATA 命令及其统计量的解析

残差U 序列相关:

①DW 统计量——针对一阶自相关的(高阶无效)

STATA 命令:

1.先回归

2.直接输入dwstat

统计量如何看:查表

②Q 统计量——针对高阶自相关correlogram-Q-statistics

STATA 命令:

1. 先回归reg

2. 取出残差predict u,residual(不要忘记逗号)

3. wntestq u Q

统计量如何看:p 值越小(越接近0)Q 值越大 ——表示存在自相关

具体自相关的阶数可以看自相关系数图和偏相关系数图:

STATA 命令:

自相关系数图:

ac u( 残差) 或者窗口操作在 Graphics ——Time-series graphs —— correlogram(ac)

偏相关系数图:

pac u 或者窗口操作在Graphics——Time-series graphs—— (pac)

自相关与偏相关系数以及Q 统计量同时表示出来的方法:

corrgram u 或者是窗口操作在

Statistics——Time-series——Graphs—— autocorrelations

Autocorrelations&Partial

③LM 统计量——针对高阶自相关

STATA 命令:

1. 先回归reg

2. 直接输入命令 estate bgodfrey,lags(n) 或者窗口操作

在 Statistics— —Postestimation(倒数第二个)——Reports and Statistics(倒数第二个) ——在里面选择 Breush-Godfrey LM(当然你在里面还可以找到方差膨胀因子还有DW 统计量等常规统计量)

LM 统计量如何看:

P 值越小(越接近 0)表示越显着(显着拒绝原假设),存在序列相关

具体是几阶序列相关,你可以把滞后期写为几,当然默认是 1,(通常的方法是先看图,上面说的自相关和偏相关图以及Q 值,然后再利用LM 肯定)。

平稳时间序列存在自相关的问题的解决方案

残差出现序列相关的补救措施:

1、一阶自相关 :

最近简单的方法是用AR(1)模型补救,就是在加一个残差的滞后项即可。

2、高阶的自相关:

用AR(n)模型补救。

AR 模型的识别与最高阶数的确定:

可通过自相关系数来获得一些有关 AR(p) 模型的信息,如低阶 AR(p) 模型系数符号的信息。但是,对于自回归过程AR(p),自相关系数并不能帮助我们确定 AR(p) 模型的阶数 p。所以,可以考虑使用偏自相关系数?k,k,以便更加全面的描述自相关过程AR(p)的统计特征。

且对于一个AR(p) 模型,?k,k 的最高阶数为p,也即AR(p) 模型的偏自相关系数是 p 阶截尾的。因此,可以通过识别AR(p)模型的偏自相关系数的个数,来确定 AR(p) 模型的阶数 p,进而设定正确的模型形式,并通过具体的估计方法估计出AR(p) 模型的参数。

如果AR(p)还解决不了则进一步使用:MA(q)模型,以及ARMA(p,q)模型 。

1、MA(q)

MA(q) 的偏自相关系数的具体形式随着 q 的增加变得越来越复杂,很难给出一个关于 q 的一般表达式,但是,一个MA(q) 模型对应于一个AR(∞) 模型。因此,MA(q) 模型的偏自相关系数一定呈现出某种衰减的形式是拖尾的。故可以通过识别一个序列的偏自相关系数的拖尾形式,大致确定它应该服从一个MA(q) 过程。

2、ARMA(p,q)就是既含有AR 项又含有MA 项。

我们引入了自相关系数和偏自相关系数这两个统计量来识别 ARMA(p,q) 模型的系数特点和模型的阶数。但是,在实际操作中,自相关系数和偏自相关系数是通过要识别序列的样本数据估计出来的,并且随着抽样的不同而不同,其估计值只能同理论上的大致趋势保持一致,并不能精确的相同。因此,在实际的模型识别中,自相关系数和偏自相关系数只能作为模型识别过程中的一个参考,并不能通过它们准确的识别模型的具体形式。具体的模型形式,还要通过自相关和偏自相关系数给出的信息,经过反复的试验及检验,最终挑选出各项统计指标均符合要求的模型形式。

注:无论采取什么样的方式,只要能够把残差中的序列相关消除掉,又不会引入新的问题,这样的模型就是最优模型。

与平稳性检验及其统计量解析(P212 张晓峒)

白噪声检验:

1. Q 检验 wntestq var,lag(n)

2.Bartlett 检验 wntestb var ,table(表示结果以列显示,而不做图。不加 table 就

与时间序列相关的S命令及其统计量的解析.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c1l6387rn950weks4q8jb3z01x0bw3600n4z_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top