八年级数学(下册)知识点总结
二次根式 【知识回顾】
1.二次根式:式子a(a≥0)叫做二次根式。 2.最简二次根式:必须同时满足下列条件:
⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。 3.同类二次根式:
二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:
a(a>0)
(1)(a)2=a (a≥0); (2)a2?a? 0 (a=0); 5.二次根式的运算:
?a(a<0)
(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,?变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.
(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.
=·(a≥0,b≥0);
bb(b≥0,a>0). ?aa(4)有理数的加法交换律、结合律,乘法交换律及结合律,?乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算. 【典型例题】
1、概念与性质 例1下列各式1)11,2)?5,3)?x2?2,4)4,5)(?)2,6)1?a,7)a2?2a?1, 53其中是二次根式的是_________(填序号). 例2、求下列二次根式中字母的取值范围
x?5?(1)
13?x;(2)
(x-2)2
例3、 在根式1)
a2?b2;2)x;3)x2?xy;4)27abc,最简二次根式是( ) 5A.1) 2) B.3) 4) C.1) 3) D.1) 4)
1xyy?1?8x?8x?1?,求代数式??2?2yx4、已知:
xy??2的值。yx
例
例5、 (2009龙岩)已知数a,b,若(a?b)2=b-a,则 ( )
A. a>b B. a
根号外的a移到根号内,得 ( )
A. ; B. -; C. -; D. 例2. 把(a-b)
1
-a-b 化成最简二次根式
例3、计算:
例4、先化简,再求值:
11b5?15?1??,其中a=,b=.
22 a?bba(a?b) 例5、如图,实数a、b在数轴上的位置,化简 :a2?b2?(a?b)2
4、比较数值 (1)、根式变形法
当a>0,b>0时,①如果a>b,则a>b;②如果a
当a>0,b>0时,①如果a>b,则a>b;②如果a
通过分母有理化,利用分子的大小来比较。 例3、比较21与的大小。 3?12?12222(4)、分子有理化法
通过分子有理化,利用分母的大小来比较。 例4、比较15?14与14?13的大小。 (5)、倒数法
例5、比较7?6与6?5的大小。 (6)、媒介传递法
适当选择介于两个数之间的媒介值,利用传递性进行比较。 例6、比较7?3与87?3的大小。 (7)、作差比较法
在对两数比较大小时,经常运用如下性质: ①a?b?0?a?b;②a?b?0?a?b 例7、比较
(8)、求商比较法
它运用如下性质:当a>0,b>0时,则: ①?1?a?b; ②?1?a?b
bbaa2?12与的大小。 3?13例8、比较5?3与2?3的大小。 5、规律性问题
例1. 观察下列各式及其验证过程:
, 验证:
;
验证:.
(1)按照上述两个等式及其验证过程的基本思路,猜想4行验证;
4的变形结果,并进15(2)针对上述各式反映的规律,写出用n(n≥2,且n是整数)表示的等式,并给出验证过程.
勾股定理
1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。
2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。,那么这个三角形是直角三角形。
3.经过证明被确认正确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)
4.直角三角形的性质
(1)、直角三角形的两个锐角互余。可表示如下:∠C=90°?∠A+∠B=90° (2)、在直角三角形中,30°角所对的直角边等于斜边的一半。 ∠A=30°
可表示如下: ?BC= ∠C=90°
(3)、直角三角形斜边上的中线等于斜边的一半 ∠ACB=90°
1 可表示如下: ?CD=AB=BD=AD
21AB 2 D为AB的中点 5、摄影定理
在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项
∠ACB=90°
CD2?AD?BD
? AC2?AD?AB
CD⊥AB 6、常用关系式
由三角形面积公式可得:AB?CD=AC?BC 7、直角三角形的判定
1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 3、勾股定理的逆定理:如果三角形的三边长a,b,c有关系a2?b2?c2,那么这个三角形是直角三角形。 8、命题、定理、证明
BC2?BD?AB
1、命题的概念
判断一件事情的语句,叫做命题。 理解:命题的定义包括两层含义: (1)命题必须是个完整的句子;
(2)这个句子必须对某件事情做出判断。 2、命题的分类(按正确、错误与否分) 真命题(正确的命题) 命题 假命题(错误的命题)
所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。 所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。 3、公理
人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。 4、定理
用推理的方法判断为正确的命题叫做定理。 5、证明
判断一个命题的正确性的推理过程叫做证明。 6、证明的一般步骤
(1)根据题意,画出图形。
(2)根据题设、结论、结合图形,写出已知、求证。
(3)经过分析,找出由已知推出求证的途径,写出证明过程。
9、三角形中的中位线 连接三角形两边中点的线段叫做三角形的中位线。
(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。 (2)要会区别三角形中线与中位线。
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。 三角形中位线定理的作用:
位置关系:可以证明两条直线平行。 数量关系:可以证明线段的倍分关系。
常用结论:任一个三角形都有三条中位线,由此有:
结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。 结论2:三条中位线将原三角形分割成四个全等的三角形。
相关推荐: