第一范文网 - 专业文章范例文档资料分享平台

全等三角形问题中常见的8种辅助线的作法(有答案解析)

来源:用户分享 时间:2025/5/24 19:05:55 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

.

3、在等边?ABC的两边AB、AC所在直线上分别有两点M、N,D为VABC外一点,且

?MDN?60?,?BDC?120?,BD=DC. 探究:当M、N分别在直线AB、AC上移动时,

BM、NC、MN之间的数量关系及?AMN的周长Q与等边?ABC的周长L的关系.

图1 图2 图3

(I)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是 ; 此时

Q? ; L.

.

(II)如图2,点M、N边AB、AC上,且当DM?DN时,猜想(I)问的两个结论还

成立吗?写出你的猜想并加以证明;

(III) 如图3,当M、N分别在边AB、CA的延长线上时, 若AN=x,则Q= (用x、L表示).

一、倍长中线(线段)造全等

例1、(“希望杯”试题)已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________. 解:延长AD至E使AE=2AD,连BE,由三角形性质知 AB-BE <2AD

参考答案与提示

AB

DC例2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.

解:(倍长中线,等腰三角形“三线合一”法)延长FD至G使FG=2EF,连BG,EG, 显然BG=FC,

在△EFG中,注意到DE⊥DF,由等腰三角形的三线合一知

AEFCBD.

.

EG=EF

在△BEG中,由三角形性质知 EG

例3、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE.

ABDEC

解:延长AE至G使AG=2AE,连BG,DG, 显然DG=AC, ∠GDC=∠ACD 由于DC=AC,故 ∠ADC=∠DAC 在△ADB与△ADG中, BD=AC=DG,AD=AD,

∠ADB=∠ADC+∠ACD=∠ADC+∠GDC=∠ADG

故△ADB≌△ADG,故有∠BAD=∠DAG,即AD平分∠BAE 应用:

1、(09崇文二模)以的两边AB、AC为腰分别向外作等腰Rt?ACE,

?ABCRt?ABD和等腰

?BAD??CAE?90?,连接DE,M、N分别是BC、DE的中点.探究:AM与

DE的位置关系及数量关系.

(1)如图① 当?ABC为直角三角形时,AM与DE的位置关系是 ,

.

.

线段AM与DE的数量关系是 ;

(2)将图①中的等腰Rt?ABD绕点A沿逆时针方向旋转?(0

?

解:(1)ED?2AM,AM?ED; 证明:延长AM到G,使MG?AM,连BG,则ABGC是平行四边形 ∴AC?BG,?ABG??BAC?180? 又∵?DAE??BAC?180? ∴?ABG??DAE 再证:?DAE??ABG ∴DE?2AM,?BAG??EDA 延长MN交DE于H ∵?BAG??DAH?90? ∴?HDA??DAH?90? ∴AM?ED (2)结论仍然成立. 证明:如图,延长CA至F,使AC?FA,FA交DE于点P,并连接BF ∵DA?BA,EA?AF B A D N H E M G C .

全等三角形问题中常见的8种辅助线的作法(有答案解析).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c1n4ll9p3gi2i4cx3q5al1oirv327wf00pip_4.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top