材料力学-学习指导及习题答案
第 一 章 绪论
1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。
解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量Mx,即扭矩,其大小等于M。
1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力ζ与切应力η。
解:应力p与斜截面m-m的法线的夹角α=10°,故 ζ=pcosα=120×cos10°=118.2MPa η=psinα=120×sin10°=20.8MPa
1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为ζmax=100 MPa,底边各点处的正应力均为零。试问杆件横截面上存在何种内力分量,并确定其大小。图中之C点为截面形心。
解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力 FN=100×10×0.04×0.1/2=200×10N =200 kN 其力偶即为弯矩
Mz=200×(50-33.33)×10=3.33 kN·m
-3
6
3
1-4 板件的变形如图中虚线所示。试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。
解:
第 二 章 轴向拉压应力
2-1试计算图示各杆的轴力,并指出其最大值。
解:(a) FNAB=F, (b) FNAB=F,
FNBC=0,
FN,max=F FN,max=F
FN,max=3 kN
FNBC=-F,
(c) FNAB=-2 kN, FN2BC=1 kN, (d) FNAB=1 kN,
FNBC=-1 kN,
FNCD=3 kN, FN,max=1 kN
2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。如欲使BC与AB段的正应力相同,试求BC段的直径。
解:因BC与AB段的正应力相同,故
2-3 图示轴向受拉等截面杆,横截面面积A=500 mm2,载荷F=50 kN。试求图示斜截面m-m上的正应力与切应力,以及杆内的最大正应力与最大切应力。
解:
2-4(2-11) 图示桁架,由圆截面杆1与杆2组成,并在节点A承受载荷F=80kN作用。杆1、杆2的直径分别为d1=30mm和d2=20mm,两杆的材料相同,屈服极限ζs=320MPa,安全因数ns=2.0。试校核桁架的强度。
解:由A点的平衡方程
可求得1、2两杆的轴力分别为
由此可见,桁架满足强度条件。
相关推荐: