太原水上运动中心,这四个场馆分别用字母A,B,C,D表示.现把分别印有A,B,C,D的四张卡片(除字母外,其余都相同)背面朝上,洗匀放好.志愿者小玲从中随机抽取一张(不放回),再从中随机抽取一张,请你用列表或画树状图的方法求小玲抽到的两张卡片恰好是“A”和“B”的概率.
【分析】(1)判断小华和小丽在各自班级的名次即可得出答案; (2)分别得出甲乙两班的众数、中位数和平均数,再判断大小即可得;
(3)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得. 【解答】解:(1)小华在甲班是第11名,不能录用;小丽在乙班是第10名,可以录用;
(2)从众数来看,甲乙两班各被录用的10名志愿者的众数分别为8分、10分,说明甲班被录用的10名志愿者中8分最多,乙班被录用的10名志愿者中10分最多;
从中位数来看,甲乙两班被录用的10名志愿者成绩的中位数分别为9分、8.5分,说明甲班被录用的10名志愿者成绩的中位数大于乙班被录用的10名志愿者成绩的中位数;
从平均数看,甲乙两班被录用的10名志愿者成绩的平均数分别为8.9分、8.7分,说明甲班被录用的10名志愿者成绩的平均数大于乙班被录用的10名志愿者成绩的平均数. (3)画树状图如下:
由树状图知,共有12种等可能结果,其中抽到的两张卡片恰好是“A”和“B”的有2种结果, 所以抽到的两张卡片恰好是“A”和“B”的概率为19.(8分)某游泳馆推出了两种收费方式.
方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.
方式二:顾客不购买会员卡,每次游泳付费40元.
设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).
(1)请分别写出y1,y2与x之间的函数表达式.
(2)小亮一年内在此游泳馆游泳的次数x在什么范围时,选择方式一比方式二省钱.
16
=.
【分析】(1)根据题意列出函数关系式即可;
(2)根据(1)中的函数关系式列不等式即可得到结论.
【解答】解:(1)当游泳次数为x时,方式一费用为:y1=30x+200,方式二的费用为:y2=40x;
(2)由y1<y2得:30x+200<40x, 解得x>20时,
当x>20时,选择方式一比方式二省钱.
20.(9分)某“综合与实践”小组开展了测量本校旗杆高度的实践活动.他们制订了测量方案,并利用课余时间完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如下表(不完整).
课题 成员 测量工具 测量示意图
测量旗杆的高度
组长:xxx 组员:xxx,xxx,xxx 测量角度的仪器,皮尺等
说明:线段GH表示学校旗杆,测量角度的仪器的高度AC=BD=1.5m,测点A,B与H在同一条水平直线上,A,B
之间的距离可以直接测得,且点G,H,A,B,C,D都在同一竖直平面内,点C,D,E在同一条直线上,点E在GH
上.
测量数据
测量项目 ∠GCE的度数 ∠GDE的度数 A,B之间的距离
…
… 第一次 25.6° 31.2° 5.4m
第二次 25.8° 30.8° 5.6m
平均值 25.7° 31°
任务一:两次测量A,B之间的距离的平均值是 5.5 m.
任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH的高度.
(参考数据:sin25.7°≈0.43,cos25.7°≈0.90,tan25.7°≈0.48,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
17
任务三:该“综合与实践”小组在制定方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可)
【分析】任务一:根据矩形的性质得到EH=AC=1.5,CD=AB=5.5; 任务二:设EC=xm,解直角三角形即可得到结论;
任务三:根据题意得到没有太阳光,或旗杆底部不可能达到等(答案不唯一). 【解答】解:任务一:由题意可得,四边形ACDB,四边形ADEH是矩形, ∴EH=AC=1.5,CD=AB=5.5, 故答案为:5.5; 任务二:设EC=xm,
在Rt△DEG中,∠DEC=90°,∠GDE=31°, ∵tan31°=∴DE=
, ,
在Rt△CEG中,∠CEG=90°,∠GCE=25.7°, ∵tan25.7°=
,CE=
,
∵CD=CE﹣DE, ∴
∴x=13.2,
∴GH=CE+EH=13.2+1.5=14.7, 答:旗杆GH的高度为14.7米;
任务三:没有太阳光,或旗杆底部不可能达到. 21.(8分)阅读以下材料,并按要求完成相应的任务:
莱昂哈德?欧拉(LeonhardEuler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面就是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其中外心和内心,则OI2=R2﹣2Rr.
﹣
=5.5,
18
如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切于点F,设⊙O的半径为R,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr. 下面是该定理的证明过程(部分):
延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN. ∵∠D=∠N,∠DMI=∠NAI(同弧所对的圆周角相等). ∴△MDI∽△ANI.∴
=
,∴IA?ID=IM?IN,①
如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF. ∵DE是⊙O的直径,所以∠DBE=90°. ∵⊙I与AB相切于点F,所以∠AFI=90°, ∴∠DBE=∠IFA.
∵∠BAD=∠E(同弧所对的圆周角相等), ∴△AIF∽△EDB, ∴
=
.
∴IA?BD=DE?IF②
任务:(1)观察发现:IM=R+d,IN= R﹣d (用含R,d的代数式表示); (2)请判断BD和ID的数量关系,并说明理由.
(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;
(4)应用:若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为 cm.
【分析】(1)直接观察可得;
(2)BD=ID,只要证明∠BID=∠DBI,由三角形内心性质和圆周角性质即可得证; (3)应用(1)(2)结论即可;
19
(4)直接代入计算.
【解答】解:(1)∵O、I、N三点共线, ∴OI+IN=ON ∴IN=ON﹣OI=R﹣d 故答案为:R﹣d; (2)BD=ID 理由如下:
如图3,过点I作⊙O直径MN,连接AI交⊙O于D,连接MD,BI,BD,
∵点I是△ABC的内心
∴∠BAD=∠CAD,∠CBI=∠ABI
∵∠DBC=∠CAD,∠BID=∠BAD+∠ABI,∠DBI=∠DBC+∠CBI ∴∠BID=∠DBI ∴BD=ID
(3)由(2)知:BD=ID ∴IA?ID=DE?IF ∵DE?IF=IM?IN
∴2R?r=(R+d)(R﹣d) ∴R2﹣d2=2Rr ∴d2=R2﹣2Rr
(4)由(3)知:d2=R2﹣2Rr;将R=5,r=2代入得: d2=52﹣2×5×2=5, ∵d>0 ∴d=
.
故答案为:
20
相关推荐: