实用精品文献资料分享
决两步计算的实际问题。 教学过程: 一、创设情境 1.谈话引入:(出示相应图片)今天我们研究一个与这两处建筑有关的数学问题。 二、自主探索 教学P9例8 1.提问:题目中告诉我们哪些条件? 要我们求什么问题? 启发:你能从题目中找出大雁塔和小雁塔高度之间的相等关系吗?题目中的哪句话能清楚地表明大雁塔和小雁塔高度之间的关系? 提出要求: 你能不能用不同的等量关系式将大雁塔和小雁塔高度之间的相等关系表示出来? 学生想到的等量关系式: ①小雁塔高度×2-22=大雁塔的高度; ②小雁塔高度×2-大雁塔的高度=22。 根据学生回答,教师在题目中相关文字下作出标志,并要求学生进行完整地表述 2.引导学生观察第一个等量关系式,在这个等量关系式中,哪个数量是已知的?哪个数量是要我们去求的? 追问:用什么方法来解决这个问题? 板书课题:列方程解决实际问题 3.列方程解决问题一般要经过哪几个步骤? 让学生先自主尝试设未知数,并根据第一个等量关系列出方程。 4.提问:这样的方程,你以前解过没有?运用以前学过的知识,你能解出这个方程吗? 5.提问:还可以怎样列方程? 6.小结:刚才我们通过列方程解决了一个实际问题,你能说说列方程解决实际问题的大致步骤吗?其中哪些环节很重要? ①要根据题目中的条件寻找等量关系, ②分清等量关系中的已知量和未知量,用字母表示未知量并列方程; ③解出方程后,要即使进行检验。 三、巩固练习 1.做P10“练一练” (1)先将练一练数量关系式填写完整。 (2)根据等量关系式列方程解答。 2.做练习二第5-6题。 四、你知道吗? 学生自主学习,了解方程的由来,了解古代数学就家李冶 五、全课总结 今天这节课我们学习了什么内容?你有哪些收获?还有没有疑惑的地方? 六、课堂作业: P11练习二第7~8题。 板书设计:
第九课时 列方程解决实际问题练习【7】 教学内容: 教科书P12第9~15题 教学目标要求: 1.进一步巩固形如ax+b=c的方程的解法,会列方程解决两步计算的实际问题。 2.使学生在积极参与数学活动的过程中,养成独立思考、主动与他人合作交流、自觉检验等习惯。 教学重点: 进一步掌握列方程解应用题的方法 教学难点: 能熟练理
实用精品文献资料分享
解题意、分析数量关系正确找出应用题中数量间的相等关系。 教学过程: 一、基础训练 1.列方程,不计算。 (1)每支钢笔x元,购买4支钢笔要60元. (2)小明有x张邮票,小军邮票的张数比小明的3倍还少5张,小军有邮票55张. (3)修路队x天修2.4千米的公路,平均每天修0.6千米. (4)商店运来苹果a千克,运来的橘子是苹果的5倍,运来橘子200千克. 2.我当包公,判一判. (1)0.5是方程3x+0.7=1.6解 (2)方程一定是等式,等式也一定是方程 (3)方程3x+3=27与方程2x+2=18的解相同 (4)X+2=2+x是方程 3.择优录取,选一选 (1)方程4x-2=10的解是( ) A.x=2 B.x=3 C.x=32 D.x=48 (2)甲乙两地间的铁路长480千米,客车和货车同时从两地相对开出,经过4小时相遇.已知客车每小时行65千米,货车每小时行x千米.不正确的方程是( ) A.65×4+4x=480 B.4x=480-65 C.65+x=480÷4 D.(65+x)×4=480 (3)六(1)班植树68棵,比六(2)班植树棵数2倍少8棵,六(2)班植树多少棵?解:设六(2)班植数x棵,下列方程错误的是( ) A.2x-8=68 B.2x=68+8 C.68=2x+8 (4)张强今年a岁,李东今年(a-7)岁,再过c年,他们的年龄相差( )岁. A.7 B.c C.c+7 (5)x=1.5不是方程( )的解。 A.5x+6x=165 B.10×5-6x=41 C.3x-1.8=2.7 二、综合训练 1.P12第9题解方程下面3条 2.解决问题,我能行 学生说一说数量关系式,列方程,独立解方程 (1)P12第11-12题 小瓶容量×3=1.5 大瓶单价-3.2=1.8 此题出现了两个未知数,怎么办? 学生说一说:一个用x表示,另一个用y表示 学生独立列方程,并解方程 (2)p12第14题 学生说一说数量关系式列方程,解方程 12个墨水的价格+1个文件夹价格=25.1 (3)P12第15题 读题理解“华氏温度=摄氏温度×1.8+32” 三、课堂小结 今天这节课我们学习了什么内容?你有哪些收获? 四、课堂作业 1.P12第9题上面3条。第10题。第13题. 板书设计:
第十课时 列方程解决实际问题【8】 教学内容: 教科书P13例9 、P14“练一练”、P16练习三第1~3题。 教学目标要求: 1.使学生在解决实际问题的过程中,理解并掌握形如ax+bx=c的方程的解法,
实用精品文献资料分享
会列上述方程解决两步计算的实际问题。 2.掌握根据题意找出数量间相等关系的方法,养成根据等量关系列方程的习惯。 教学重点: 掌握列方程解应用题的基本方法, 在理解题意分析数量关系的基础上正确找出应用题中数量间的相等关系。 教学难点: 能正确找出应用题中数量间的相等关系。 教学过程: 一、谈话导入 今天研究一个与颐和园有关的数学问题。 二、学习新知 1.P13例9 (1)指名读题 ,分析数量关系。 用线段图表示出题目中数量之间的关系吗? 学生尝试画图,集体交流。 根据线段图得到:水面面积+陆地面积=颐和园的占地面积 启发:这大题目中有两个未知数,我们设谁为x呢? (2)列方程并解方程 指名学生列出方程,鼓励学生独立求解。 如果用x表示陆地面积,那么可以怎样表示水面面积呢? 追问:这道题可以怎样检验? 检验:A、72.5+72.5×3=290(公顷) B、217.5÷72.5=3 (3)观察我们今天学习的方程,与前面的有什么不同? 小结:像这样含有两个未知数的问题我们也可以列方程来解答。 (4)学生独立完成P14练一练第1题 三、巩固练习 1.P14练一练第2题 教师引导学生找出数量关系式 陆地面积×2.4-陆地面积=2.1 2.解方程 2x+3x=60 3.6x-2.8x=12 100x-x=198 师:这几道方程以例题中的方程有什么共同特点,解这一类方程时要先做什么?依据是什么? 3.根据线段图列出方程 4.解决实际问题:(列方程解) (1)柏树松数共有750棵,柏树的棵数是松树的1.5倍,两种树各多少棵? 为什么选择松树的数量设为x呢? (2)一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米? 在做这道题时你认为应注意什么呢? 四、全课小结 这节课学习了列方程解决问题? 在解答这一类应用题时应注意什么? 五、课堂作业: P16练习三第2-3题 板书设计: 第十一课时 列方程解决实际问题--相遇问题【9】 教学内容: 教科书P14~P15例10、练一练P16第4~7题 教学目标要求: 1.使学生在解决实际问题的过程中,进一步理解并掌握形如ax+bx=c的方程的解法。 结合具体事例,经历自主尝试列方程解决稍复杂的相遇问题的过程。 2.能根据相遇问题中的等量关系列方程并解答,感受解题方法的多样化。 3.体验用方程解决问题的优越性,获得自主解决问题的积极情感和学好数学的信
实用精品文献资料分享
心。 教学重点: 正确地寻找数量之间的相等关系 教学难点: 掌握列方程解具有两积之和(或差)的数量关系的应用题的解法。 教学过程: 一、复习导入 1.在相遇问题中有哪些等量关系? 甲速×相遇时间+乙速×相遇时间=路程 (甲速+乙速)×相遇时间=路程 2、一辆客车和一辆货车从两地出发,相向而行,经过3小时相遇。客车的速度是95千米/时,货车的速度是85千米/时。两地相距多少千米? 第一种解法:用两车的速度和×相遇时间:(95+85)×3 第二种解法:把两车相遇时各自走的路程加起来:95×3+85×3 师:画出线段图,并板书出两种解法 3.揭示课题:如果我们把复习准备中的第2题改成“已知两地之间的路程、相遇时间及其中一辆车的速度,求另一辆车的速度”,要求用方程解,又该怎样解答呢?这节课我们就来学习列方程解相遇问题的应用题。 (板书课题) 二、教学新课 1.出示P14例10 一辆客车和一辆货车从相距540千米的两地出发,相向而行,经过3小时相遇。客车的速度是95千米/时,货车的速度是多少? (1)指名读题,找出已知所求,引导学生根据复习题的线段图画出线段图。 (2)根据线段图学生找出数量间的相等关系: 甲速×相遇时间+乙速×相遇时间=路程 (甲速+乙速)×相遇时间=路程 (1)列方程 设未知数列方程并解答。启发学生用不同方法列方程。 解:设货车的速度是为x千米/时。 95×3+3x=540 (95+x)×3=540 285+3x=1463 95+x=540÷3 3x=540-285 95+x=180 3x= 255 x=180-95 x=255÷3 x=85 x=85 答:货车的速度是为85千米/时. (4)检验 三、拓展应用 1.P15练一练 (1)先画线段图整理条件和问题 (2)找出数量间的相等关系 (3)列方程并解方程 2.P16第4题 1.5x-x=1 4x-8×5=20 0.2×2+0.4x=5 3.看图列式 (1)求路程 (2)求相遇时间 (3) 求乙汽车速度 4.P16练习三第7题 四、课堂小结 今天这节课我们学习了什么内容?你有哪些收获? 五、课堂作业 P16练习三第5、6题 板书设计: 列方程解决实际问题--相遇问题 甲速×相遇时间+乙速×相遇时间=路程
(甲速+乙速)×相遇时间=路程 解:设货车的速度是为x千米/时。 95×3+3x=540 (95+x)×3=540 285+3x=1463 95+x=540÷3
相关推荐: