第1课时 集合的含义与表示
(一)教学目标1.知识与技能
(1)初步理解集合的含义,知道常用数集及其记法.
(2)初步了解“属于”关系的意义.理解集合相等的含义.
(3)初步了解有限集、无限集的意义,并能恰当地应用列举法或描述法表示集合.2.过程与方法
(1)通过实例,初步体会元素与集合的“属于”关系,从观察分析集合的元素入手,正确地理解集合.
(2)观察关于集合的几组实例,并通过自己动手举出各种集合的例子,初步感受集合语言在描述客观现实和数学对象中的意义.
(3)学会借助实例分析、探究数学问题(如集合中元素的确定性、互异性).
(4)通过实例体会有限集与无限集,理解列举法和描述法的含义,学会用恰当的形式表示给定集合掌握集合表示的方法.
3.情感、态度与价值观
(1)了解集合的含义,体会元素与集合的“属于”关系.(2)在学习运用集合语言的过程中,增强学生认识事物的能力.初步培养学生实事求是、
扎实严谨的科学态度.(二)教学重点、难点
重点是集合的概念及集合的表示.难点是集合的特征性质和概念以及运用特征性质描述法正确地表示一些简单集合.(三)教学方法
尝试指导与合作交流相结合.通过提出问题、观察实例,引导学生理解集合的概念,分
析、讨论、探究集合中元素表达的基本要求,并能依照要求举出符合条件的例子,加深对概念的理解、性质的掌握.通过命题表示集合,培养运用数学符合的意识.
教学环节 教学内容 师生互动 设计意图 提出问题 学生回答(不能,应为7种),一个百货商店,第一批进货是帽子、皮然后教师和学生共同分析原因:由设疑激趣,鞋、热水瓶、闹钟共计4个品种,第二批于两次进货共同的品种有两种,故进货是收音机、皮鞋、尼龙袜、茶杯、应为4 +5 – 2 = 7种.从而指出:导入课题.闹钟共计5个品种,问一共进了多少品种 ??这好像涉及了另一种新的运 的货?能否回答一共进了4 + 5 = 9种呢? 算.?? 引导学生回顾,初中代数中不等式的解法一节中提到的有关知识:复习引入 通过复一般地,一个含有未知数的不①初中代数中涉及“集合”的提法.习回顾,引等式的所有解,组成这个不等式的②初中几何中涉及“集合”的提法. 出集合的解的集合,简称为这个不等式的解概念. 集. 几何中,圆的概念是用集合描述的.
第一组实例(幻灯片一):通过实例,引导学生经历并体 (1)“小于l0”的自然数0,1,2,3,??,9. (2)满足3x – 2 >x + 3的全体实教师提问:①以上各例(构成集会集合(描数.合)有什么特点?请大家讨论.(3)所有直角三角形.学生讨论交流,得出集合概念述性)概念(4)到两定点距离的和等于两定点的要点,然后教师肯定或补充.概念间的距离的点.②我们能否给出集合一个大体形成的过形成 (5)高一(1)班全体同学.描述???学生思考后回答,然后教程,引导学(6)参与中国加入WTO谈判的中方师总结.成员.③上述六个例子中集合的元素生进一步1.集合:各是什么?明确集合一般地,把一些能够确定的不同的 ④请同学们自己举一些集合的及集合元对象看成一个整体,就说这个整体是由例子. 素的概念,这些对象的全体构成的集合(或集).2.集合的元素(或成员):会用自然语言描述集合. 即构成集合的每个对象(或成员), 第二组实例(幻灯片二):国代表团的成员构成的集合.2(1)参加亚特兰大奥运会的所有中 教师要求学生看第二组实例,并提问:①你能指出各个集合的元素概念深化 (2)方程x = 1的解的全体构成的集吗?②各个集合的元素与集合之间引入集合合.是什么关系?③例(2)中数0,–2语言描述(3)平行四边形的全体构成的集是这个集合的元素吗?集合. 合. 学生讨论交流,弄清元素与集(4)平面上与一定点O的距离等于r合之间是从属关系,即“属于”或的点的全体构成的集合.3.元素与集合的关系: “不属于”关系.
教学环节 教学内容 集合通常用英语大写字母A、B、C?表示,它们的元素通常用英语小写字母a、b、c?表示.师生互动 设计意图 如果a是集合A的元素,就说a属于A,记作a∈A,读作“a属于A”.如果a不是集合A的元素,就说a不属于教师提问:“我们班中高个子的同学”、“年轻人”、“接近数通过讨A,记作a?A,读作“a不属于A”.0的数”能否分别组成一个集合,论,使学生4.集合的元素的基本性质;(1)确定性:集合的元素必须是确定的.不能确定的对象不能构成集合.(2)互异性:集合的元素一定是互异为什么?明确集合学生分组讨论、交流,并在教元素所具师的引导下明确:有的性质,给定一个集合,任何一个对象从而进一的.相同的几个对象归于同一个集合时只能算作一个元素.是不是这个集合的元素也就确定步准确理了.另外,集合的元素一定是互异解集合的的.相同的对象归于同一个集合时概念. 只能算作集合的一个元素. 念深化 第三组实例(幻灯片三):22 (1)由x,3x + 1,2x – x + 5三个式子构成的集合.例,并提问:它们各有元素多少现集合的(2)平面上与一个定点O的距离等于个?元素个数1的点的全体构成的集合. 学生通过观察思考并回答问具有不同(3)方程x2 = – 1的全体实数解构成的题. 的类别,从集合.然后,依据元素个数的多少将而使学生通过观教师要求学生观察第三组实察实例,发 5.空集:不含任何元素的集合,记作?.些是有限集?哪些是无限集、空集存6.集合的分类:按所含元素的个数分集??? 在的客观为有限集和无限集. 请同学们熟记上述符号及其意义. 7.常用的数集及其记号(幻灯片四).意义. N:非负整数集(或自然数集). N*或N+:正整数集(或自然数集去掉集合分类. 感受到有让学生指出第三组实例中,哪限集、无限0).Z:整数集.Q:有理数集.R:实数集. 教学环节 教学内容 师生互动 设计意图
师生合作应用定义表示集合. 例1 解答:(1)设小于10的所有自然数组成的集合为A,那么 A = {0,1,2,3,4,5,6,7,列举法: 8,9}. 定义:把集合的元素一一列举出来,由于元素完全相同的两个集合并用花括号“{}”括起来表示集合的方相等,而与列举的顺序无关,因此法叫做列举法. 例1 用列举法表示下列集合: 集合A可以有不同的列举法. 例如: A = {9,8,7,6,5,4,3,2,(1)小于10的所有自然数组成的集1,0}. 2合; (2)设方程x = x 的所有实数(2)方程x2 = x的所有实数根组成根组成的集合为B,那么B = {0,1}. 的集合; (3)设由1~20以内的所有质(3)由1~20以内的所有质数组成数组成的集合为C,那么 应用 举例 的集合. 描述法: C = {2,3,5,7,11,13,17,19}. 定义:用集合所含元素的共同特征例2 解答:(1)设方程x2 – 2 = 表示集合的方法称为描述法. 具体方法0的实数根为 x,并且满足条件x2 – 2 是:在花括号内先写上表示这个集合元= 0,因此,用描述法表示为 素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征. 例2 试分别用列举法和描述法表2A = {x∈R| x–2 = 0}. 2方程x –2 = 0有两个实数根,?2,因此,用列举法表示为 A = {2,?2}. (2)设大于10小于20的整数为 2 示下列集合: (1)方程x2 –2 = 0的所有实数根组x,它满足条件x∈Z,且10<x<20. 成的集合; 因此,用描述法表示为 (2)由大于10小于20的所有整数组B = {x∈Z | 10<x<20}. 成的集合. 大于10小于20的整数有11,12,13,14,15,16,17,18,19,因此,用列举法表示为 B = {11,12,13,14,15,16,17,18,19}.
相关推荐: