?¡¾½â¡¿£¨1£©ÓÉ??xlim???F(x)?1?A?1??xlim?0?F(x)?µÃ?
xlim?0?F(x)?B??1£¨2£© P(X?2)?F(2)?1?e?2?
P(X?3)?1?F(3)?1?(1?e?3?)?e?3?
(3) f(x)?F?(x)????e??x,x?0?0,x?0
8.ÉèËæ»ú±äÁ¿XµÄ¸ÅÂÊÃܶÈΪ
?x,0?x?1,f£¨x£©=??2?x,1?x?2, ??0,ÆäËû.ÇóXµÄ·Ö²¼º¯ÊýF£¨x£©£¬²¢»³öf£¨x£©¼°F£¨x£©. ¡¾½â¡¿µ±x<0ʱF£¨x£©=0
µ±0¡Üx<1ʱF(x)??xx??f(t)dt??0??f(t)dt??0f(t)dt ??x0tdt?x2 2
µ±1¡Üx<2ʱF(x)??x??f(t)dt
??01??f(t)dt??f(t)dt??x01f(t)dt??1x0tdt??1(2?t)dt
1x2?
2?2x?32?2?x2?2?2x?1µ±x¡Ý2ʱF(x)??x??f(t)dt?1
??0,x?0?x20?x?1¹Ê F(x)???2,?2??x?2x?1?x?2?21,?1,x?2
9.ÉèËæ»ú±äÁ¿XµÄÃܶȺ¯ÊýΪ
9
£¨1£© f(x)=ae-?|x|,¦Ë>0;
?(2) f(x)=?bx,0?x?1,?11?x?2, ?x2,?0,ÆäËû.ÊÔÈ·¶¨³£Êýa,b£¬²¢ÇóÆä·Ö²¼º¯ÊýF£¨x£©. ¡¾½â¡¿£¨1£© ÓÉ
????|x|?2a??f(x)dx?1Öª1?????aedx?2a?0e??xdx??
¹Ê a??2
??e??x,x¼´ÃܶȺ¯ÊýΪ f(x)????2?0??e?x??2x?0µ±x¡Ü0ʱF(x)??xx???f(x)dx??e?xdx?12e?x??2 µ±x>0ʱF(x)??x0??x?x??f(x)dx????2edx??x?02e?dx
?1?12e??x ¹ÊÆä·Ö²¼º¯Êý
?1?1e??x,x?F(x)????20
?1??2e?x,x?0(2) ÓÉ1???21??f(x)dx??10bxdx??x2dx?b112?2 µÃ b=1
¼´XµÄÃܶȺ¯ÊýΪ
??x,0?x?1f(x)???12,1?x?2
?x??0,ÆäËûµ±x¡Ü0ʱF£¨x£©=0 µ±0 ??xdx?x20x2 µ±1¡Üx<2ʱF(x)??x??f(x)dx??00dx??1x1??0xdx??1x2dx 10 ?31? 2xµ±x¡Ý2ʱF£¨x£©=1 ¹ÊÆä·Ö²¼º¯ÊýΪ ?0,?2?x,?F(x)??2?3?1,?2x?1,? x?00?x?1 1?x?2x?210.ÉèËæ»ú±äÁ¿XµÄ·Ö²¼º¯ÊýΪ£ºF(x)=A+Barctanx,(-??x???). Ç󣺣¨1£©ÏµÊýAÓëB£» £¨2£©XÂäÔÚ£¨-1£¬1£©ÄڵĸÅÂÊ£» £¨3£©XµÄ·Ö²¼Ãܶȡ£ 1A=1/2£¬B=½â ¡ð 12 2 1/2£» ¡ð3 f (x)=1/[?(1+x)] £» ¡ð? 11.ij¹«¹²Æû³µÕ¾´ÓÉÏÎç7ʱ¿ªÊ¼£¬Ã¿15·ÖÖÓÀ´Ò»Á¾³µ£¬Èçij³Ë¿Íµ½´ï´ËÕ¾µÄʱ¼äÊÇ7ʱµ½7ʱ30·ÖÖ®¼äµÄ¾ùÔÈ·Ö²¼µÄËæ»ú±äÁ¿£¬ÊÔÇóËûµÈ³µÉÙÓÚ5·ÖÖӵĸÅÂÊ. ½â Éè³Ë¿ÍÓÚ7ʱ¹ýX·ÖÖÓµ½´ï³µÕ¾£¬ÓÉÓÚXÔÚ£Û0£¬30£ÝÉÏ·þ´Ó¾ùÔÈ·Ö²¼£¬¼´ÓÐ ?1?,f(x)=?30??0,0?x?30,ÆäËû. ÏÔÈ»£¬Ö»Óг˿ÍÔÚ7¡Ã10µ½7¡Ã15Ö®¼ä»ò7¡Ã25µ½7¡Ã30Ö®¼äµ½´ï³µÕ¾Ê±£¬Ëû£¨»òËý£© µÈ³µµÄʱ¼ä²ÅÉÙÓÚ5·ÖÖÓ£¬Òò´ËËùÇó¸ÅÂÊΪ P{10£¼X¡Ü15}+P{25£¼X¡Ü30}= 3011dx??1030?2530dx=1/3. 15 12.ÉèX~N£¨3£¬22£©£¬ £¨1£© ÇóP{2£¼X¡Ü5}£¬P{-4£¼X¡Ü10}£¬P{£üX£ü£¾2}£¬P{X£¾3}; £¨2£© È·¶¨cʹP{X£¾c}=P{X¡Üc}. ¡¾½â¡¿£¨1£© P(2?X?5)?P??2?3X?35?3???? 22??2?1??1???(1)???????(1)?1???? ?2??2? ?0.8413?1?0.6915?0.5328??4?3X?310?3?P(?4?X?10)?P???? 22??2 11 ????7??7????????0.9996 ?2??2?P(|X|?2)?P(X?2)?P(X??2) ?X?32?3??X?3?2?3??P???P????2222?????1??5??1??5? ?1???????????????1???? ?2??2??2??2??0.6915?1?0.9938?0.6977P(X?3)?P((2) c=3 X?33-3?)?1??(0)?0.5 22 13.¹«¹²Æû³µ³µÃŵĸ߶ÈÊǰ´³ÉÄêÄÐ×ÓÓë³µÃŶ¥ÅöÍ·µÄ»ú»áÔÚ1%ÒÔÏÂÀ´Éè¼ÆµÄ.ÉèÄÐ×ÓÉí¸ßX·þ´Ó?=170(cm),?=6(cm)µÄÕý̬·Ö²¼£¬¼´X~N£¨170£¬62£©£¬ÎʳµÃŸ߶ÈÓ¦ÈçºÎÈ·¶¨£¿ ½â É賵ß߶ÈΪh(cm)£¬°´Éè¼ÆÒªÇóP{X¡Ýh}¡Ü0.01»òP{X£¼h}¡Ý0.99£¬ÒòΪX~N£¨170£¬62£©£¬¹Ê P{X£¼h}=P??X?170h?170??h?170???¡Ý0.99£¬ ????6??6?6?²é±íµÃ ?£¨2.33£©=0.9901£¾0.99. ¹ÊÈ¡ h?170=2.33£¬¼´h=184.Éè¼Æ³µÃŸ߶ÈΪ184£¨cm£©Ê±£¬¿Éʹ³ÉÄêÄÐ×ÓÓë³µÃÅÅö6Í·µÄ»ú»á²»³¬¹ý1%. 14.ijÐͺŵç×Ó¹ÜÊÙÃü£¨ÒÔСʱ¼Æ£©½üËÆµØ·þ´Ó?(160,20)·Ö²¼£¬Ëæ»úµÄѡȡËÄÖ»£¬ÇóÆäÖÐûÓÐÒ»Ö»ÊÙÃüСÓÚ180СʱµÄ¸ÅÂÊ£¨´ð°¸Óñê×¼Õý̬·Ö²¼º¯Êý±íʾ£©. ½â£º¼ÇÈ¡³öµÄËÄÖ»µç×Ó¹ÜÊÙÃü·Ö±ðΪX1,X2,X3,X4£¬ËùÇó¸ÅÂÊΪP£¬Ôò 2P?P{min(X1,X2,X3,X4)?180} ?P{Xi?180}4?[1?P{Xi?180}]4 i?1,2,3,4 ?[1??(1)]4?0.00063 ϰ Ìâ Èý 12
Ïà¹ØÍÆ¼ö£º