(4)建设周期短,建造灵活方便,运行维护费用低。光伏发电系统可以按照需要将光伏组件灵活地串并联,达到所需功率,所以其建设周期短,扩容方便;安装于房顶,沙漠,还可与建筑相结合,从而节约占地面积,节省安装成本;太阳能光伏发电所消耗的太阳能无需付费,一年中往往只需在遇到连续阴雨天最长的季节前后去检查太阳能电池组件表面是否被污染,接线是否可靠以及蓄电池电压是否正常等,因而太阳能光伏发电的运行费用很低。
(5)光伏建筑集成。光伏产品与建筑材料集成是目前国际上研究及发展的前沿,这种产品不仅美观大方,还节省发电站使用的土地面积和费用。
(6)分布式。光伏发电系统的分布式特点将提高整个能源系统的安全性和可靠性,特别是从抗御自然灾害和战备的角度看,更具有明显的意义。 1.1.2 太阳能光伏发电系统简介
太阳能光伏发电系统按是否与电网连接可分为独立离网光伏发电系统和并网光伏发电系统。太阳能光伏发电系统结构,该系统中的能量能进行双向传输。在有太阳能辐射时,由太阳能电池阵列向负载提供能量;当无太阳能辐射或太阳能电池阵列提供的能量不够时,由蓄电池向系统负载提供能量。该系统可为交流负载提供能量,也可为直流负载提供能量,当太阳能电池阵列能量过剩时,可以将过剩能量存储起来或把过剩能量送入电网。该系统功能全面,但是系统过于复杂,成本高,仅在大型的太阳能光伏发电系统中才使用这种结构,并具有上述全面的功能;而一般使用的中小型系统仅具有该系统的部分功能。
(一)离网型(独立)光伏发电系统
离网光伏发电系统是指未与公共电网相连接的独立太阳能光伏发电系统,其输出功率提供给本地负载(交流负载或直流负载)的发电系统。其主要应用于远离公共电网的无电地区和一些特殊场所,如为公共电网难以覆盖的边远偏僻农村、海岛和牧区提供照明、看电视、听广播等基本生活用电,也可为通信中继站、气象站和边防哨所等特殊处所提供电源。
太阳能电池阵列控制器DC/DC变换器直流负载蓄电池 图1.1离网光伏发电系统
图1.1所示为一种常用的太阳能独立光伏发电系统结构示意图,该系统由太阳能电池阵列、DC/DC变换器、蓄电池组、DC/AC逆变器和交直流负载构成。DC/DC变换器将太阳能电池阵列转化的电能传送给蓄电池组存储起来供日照不足时使用。蓄电池组的能量直接给直流负载供电或经DC/AC变换器给交流负载供电。该系统由于有蓄电池组,因而系统成本增加,但可在无日照或日照不足时为负载供电。
(二)并网光伏发电系统
与公共电网相连接的太阳能光伏发电系统称为并网光伏发电系统。并网光伏发电系统将太阳能电池阵列输出的直流电转化为与电网电压同幅、同频、同相的交流电,并实现与电网连接,向电网输送电能。它是太阳能光伏发电进入大规模商业化发电阶段、成为电力工业组成部分之一重要方向,是当今世界太阳能光伏发电技术发展的主流趋势。
1.2 太阳能光伏发电国内外研究现状与发展趋势
当今世界各国特别是发达国家对于太阳能光伏发电十分重视,针对其制定规划,增加投入,大力发展。20世纪80年代以来,即使是在世界经济从总体上处于衰退和低谷的时期,太阳能光伏发电产业也一直以10%-15%的递增速度在发展。90年代后期,发展更为迅速,成为全球增长速度最快的高新技术产业之一。 1.2.1 国外太阳能光伏发电现状与发展趋势
到2004年,世界太阳能光伏发电装机总容量达到964.9MW,到2005年底,达到4961.69MW。己经商业化、实用化的太阳能光伏电池主要有单晶硅电池、多
晶硅电池、非晶硅电池、聚光电池、带状硅电池以及薄膜电池等几类。在国际市场上目前太阳能光伏电池的价格大约为3.15美元/W,并网系统价格为6美元/w,发电成本为0.25美元/(kw·h)。光伏电池的发电转化效率也不断提高,晶体硅光电池转化率达到15%,单晶硅光电池转化率是23.3%,砷化镓光电池转化率是25%,在实验室中特制的砷化嫁光电池转化率己达35%-36%。太阳能光伏电池/组件使用寿命大大增长,可使用30多年。目前,太阳能光伏发电主要集中在日本、欧盟和美国,其太阳能光伏发电量约占世界光伏发电量的80%。今后太阳能光伏发电系统主要围绕高效率、低成本、长寿命、美观实用等方向发展。专家们预测到2050年,太阳能光伏发电在发电总量中将占13%-15%,到2100年将约占64%。 1.2.2 我国太阳能光伏发电现状与发展趋势
20世纪90年代以来是我国太阳能光伏发电快速发展的时期,在这一时期我国光伏组件生产能力逐年增强,成本不断降低,市场不断扩大,装机容量逐年增加,2004年累计容量达35MW,约占世界份额的3%。10多年来,我国太阳能光伏产业长期平均维持了全球市场1%左右的份额。到2020年前,我国太阳能光伏发电产业将会得到不断的完善和发展,成本将不断下降,太阳能光伏发电市场发生巨大的变化:2005-2010年,我国的太阳能电池主要用于独立光伏发电系统,发电成本到2010年将约为1.20元/(kW·h);2010-2020年,太阳能光伏发电将会由独立光伏发电系统转向并网发电系统,发电成本到2020年将约为0.60元/(kw·h)。到2020年,我国太阳能光伏产业的技术水平有望达到世界先进行列。
2 太阳能离网型光伏发电系统基本组成和特性
2.1 太阳能离网型光伏发电系统概述
一般来说,太阳能离网型光伏发电系统主要包括太阳能电池阵列、控制器、蓄电池组和逆变器等部分。太阳能电池阵列是整个系统能源的来源,它把照射到其表面的太阳能转化为电能;控制器是整个系统的核心部件之一,其运行状态决定着系统的运行状态,系统在控制器的管理下运行;蓄电池的功能在于储存太阳能电池阵列受光照时所发出的电能并在无光照时向负载供电;逆变器是将直流电变换为交流电的设备,由于太阳能电池阵列和蓄电池发出的是直流电,因此当系统向交流负载供电时,逆变器是不可缺少的。常用的太阳能离网型光伏发电系统如图1.1所示。
2.2 太阳能电池
2.2.1 太阳能电池原理及分类
在太阳能光伏发电系统中,实现光电转换的最小单元是太阳能电池单体。太阳能电池单体实际上是一个PN结,PN结在光照下会产生电动势,这种效应称为光生伏特效应。当PN结处于平衡状态时,PN结处有一个耗尽层,耗尽层中存在着势垒电场,电场方向由N区指向P区。当PN结受到光照时,硅原子受光激发而产生电子空穴对,在势垒电场的作用下,空穴向P区移动,电子向N区移动,从而P区就有过剩的空穴,N区就有过剩的电子,这样便在PN结附近形成与势垒电场方向相反的光生电动势。光生电动势的一部分抵消势垒电场,另一部分使P区带正电,N区带负电,从而在P区与N区之间产生光生伏特效应。若在太阳能电池单体两侧引出电极并接上负载,则负载就有“光生电流”流过,从而获得功率输出。由上可知,太阳能电池单体将光能转换成电能的工作原理可概括为以下四个过程:
(l)太阳能电池单体吸收光子,在PN结两侧产生称为“光生载流子”的电子一空穴对,两者的电性相反,电子带负电,空穴带正电;
(2)在太阳能电池单体PN结光生载流子,通过扩散作用到达空间电荷区; (3)到达空间电荷区的光生载流子被势垒电场分离,电子被分离到N区,空穴被分离到P区;
(4)被势垒电场分离的电子和空穴分别被太阳能电池单体的正、负极收集,
若在太阳能电池单体正负极之间接入负载,则有光生电流流过,从而获得电能
实际中使用的太阳能电池是若干个太阳能电池单体经过串并联并封装后形成的太阳能电池组件,是可以单独作为电源使用的最小单元,其功率一般为几瓦至几十瓦、百余瓦。太阳能电池组件再经过串并联组合可以形成太阳能电池阵列,以满足负载功率要求。
太阳能电池多为半导体材料制造,种类繁多,形式各样,下面按照太阳能电池的材料进行分类介绍:
(l)硅太阳能电池:指以硅为基体材料的太阳能电池,如单晶硅太阳能电池、多晶硅太阳能电池和非晶硅太阳能电池等,多晶硅太阳能电池又有片状多晶硅太阳能电池、铸锭多晶硅太阳能电池、筒状多晶硅太阳能电池和球状多晶硅太阳能电池等多种。硅太阳能电池特点是由于硅资源丰富,可以大规模生产,性能稳定且光电转化效率高,是目前应用最多的太阳能电池。但其制造过程复杂,成本高。目前市场上使用最多的是单晶硅太阳能电池,转换率为17%左右,多晶硅转换效率为14%左右,非晶硅电池转化效率为6%左右。
(2)化合物半导体太阳能电池:指由两种或两种以上元素组成的具有半导体特性的化合物半导体材料制成的太阳能电池,如碲化镉太阳能电池、砷化镓太阳能电池、硒铟铜太阳能电池、磷化铟太阳能电池等。化合物半导体太阳能电池具有转换效率高,抗辐射性好,可在聚光条件下使用等特点,但碲化镉太阳能电池带有毒性,易对环境造成污染,一般用于特定场合,如空间飞行器和航空系统。
(3)有机半导体太阳能电池:指用含有一定数量的碳-碳键且导电能力介于金属和绝缘体之间的半导体材料制成的太阳能电池。该种电池虽然转换率低,但价格便宜、轻便、易于大规模制造。
(4)薄膜太阳能电池:指用单质元素、无机化合物或有机材料等制作的薄膜为基体材料的太阳能电池。目前主要有非晶硅薄膜太阳能电池、多晶硅薄膜太阳能电池、化合物半导体薄膜太阳能电池、纳米薄膜太阳能电池和微晶硅薄膜太阳能电池等。其特点是转换效率相对较高、成本降低(尤其是大大降低了晶体硅类太阳能电池的硅材料用量)、且适合规模生产,因此薄膜太阳能电池是未来太阳能电池的一个重要发展方向。
相关推荐: