?8k2m2?km?x1?x2??m?0,??m2?0, 21?4k21Qm?0,?k2?,
4
则S1?S2
??2?x12x22x?1??x?1????24?44?21
3?2?3???22x1?x2??x1?x2??2x1x2??= ??216216????8m2?13??64k2m2?22?161?4k1?4k2?????????? 3??4m??216?5?. 42?5 ?4m2?1???2?4???故S1?S2为定值,该定值为
类型四 线段为定值
x2y2?2?1例1. 已知直线l:y?x?2与圆x?y?5相交的弦长等于椭圆C:
9b22(0?b?3)的焦距长. (1)求椭圆C的方程;
(2)已知O为原点,椭圆C与抛物线y?2px(p?0)交于M、N两点,点P为椭圆C上一动点,若直线PM、PN与x轴分别交于G、H两点,求证: OG?OH为定值.
解析:(1)利用圆心到直线的距离计算出直线与圆相交的弦长,得到2c?4,c?2.利用
2x2y2?1. a?b?c求得b?5,得到椭圆方程?952222(2)证明:有条件知,M,N关于X轴对称,设M(x1,y1),P(x0,y0)则N(x1,?y1)
22x0y0x12y129922??1,??1?x12?(5?y12),x0?(5?y0) 959555 21
又直线PM的方程为
y?y0?y1?y0xy?x0y1(x?x0),令y?0得点G的横坐标xG?10
x1?x0y0?y1x1y0?x0y1
y0?y1同理得点H的横坐标xH?222x1y0?x0y1x1y0?x0y1x12y0?x0y1所以|OG||OH|=||?||?|| 22y0?y1y0?y1y0?y1 ?|12y0?y129?92222?(5?y)y?(5?y)y1??9 100?55??即OG?OH为定值.
跟踪训练五
x2y221)1.已知椭圆C:2?2?1(a?b?0),离心率e?,点G(2,在椭圆上.
2ab
(1)求椭圆C的标准方程;
(2)设点P是椭圆C上一点,左顶点为A,上顶点为B,直线PA与y轴交于点M,直线PB与x轴交于点N,求证: AM?BM为定值.
解析:(1)依题意得,设,则,
由点在椭圆上,有,解得,则,
椭圆C的方程为:
设,,,则,由APM三点共线,
22
则有,即,解得,则,
由BPN三点共线,有则
,即,解得,
=
又点P在椭圆上,满足,有,
代入上式得
=,
可知
为定值.
x2y23例2.已知椭圆C: 2?2?1(a>b>0)的离心率为,且点T?2,1?在椭圆C上,设
2ab与OT平行的直线l与椭圆C相交于P, Q两点,直线TP, TQ分别与x轴正半轴交于
M, N两点.
(I)求椭圆C的标准方程;
(Ⅱ)判断OM?ON的值是否为定值,并证明你的结论.
41??1a2b2222解析:(Ⅰ)由题意{a?b?c ,
e?c3?a223
解得: a?22, b?2, c?6 x2y2??1 故椭圆C的标准方程为82(Ⅱ)假设直线TP或TQ的斜率不存在,则P点或Q点的坐标为(2,-1),直线l的方程为
y?1?11?x?2?,即y?x?2. 22x2y2??182联立方程{ ,得x2?4x?4?0,
1y?x?22此时,直线l与椭圆C相切,不合题意. 故直线TP和TQ的斜率存在.
设P?x1,y1?, Q?x2,y2?,则 直线TP:y?1?y1?1, ?x?2?,
x1?2y2?1?x?2? x2?2直线TQ:y?1?故OM?2?x1?2x?2, ON?2?2, y1?1y2?1 由直线OT:y?11, x,设直线PQ:y?x?t(t?0)
22x2y2??182联立方程, { ?x2?2tx?2t2?4?0,
1y?x?t22当??0时, x1?x2??2t, x1?x2?2t?4,
?x?2x2?2??OM?ON ?4??1?
?y1?1y2?1?
24
???x1?2x2?2??4????
11?x1?t?1x2?t?1?22???4?x1x2??t?2??x1?x2??4?t?1?
112x1x2??t?1??x1?x2???t?1?422t2?4??t?2???2t??4?t?1? ?4?12122t?4??t?1????2t???t?1?42???4 .
跟踪训练六
x2y21.如下图,在平面直角坐标系xoy中,椭圆2?2?1(a?b?0)的左、右焦点分别为
ab?3?eF1??c,0?, F2?c,0?,已知点?1,e?和??e,2??都在椭圆上,其中为椭圆的离心率.
??
(1)求椭圆的方程;
(2)设A, B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行, AF2与BF1交于点P,
(i)若AF1?BF2?6,求直线AF1的斜率; 2(ii)求证: PF1?PF2是定值.
1c2c解析:(1)由题设知a?b?c, e?.由点?1,e?在椭圆上,得2?22?1.
aaba222?e233???1. 解得b?1,于是c?a?1,又点?e,在椭圆上,所以22?2??a4b??222 25
相关推荐: