117
∴S21=10×+a1=5+-2=.
2227
答案:
2
2??n(理)已知函数f(n)=?2???n(当n为奇数时),(当n为偶数时),且an=f(n)+f(n+1),则a1+a2+a3+?
+a100=________.
解析:当n为奇数时,an=n2-(n+1)2=-(2n+1),当n为偶数时,an=-n2+(n+1)2=2n+1,
∴an=(-1)n(2n+1),
∴a1+a2+?+a100=-3+5-7+?-199+201=2×50=100. 答案:100
11
12.已知Sn为正项数列{an}的前n项和,且满足Sn=a2+an(n?N*). n
22(1)求a1,a2,a3,a4的值; (2)求数列{an}的通项公式;
121
(3)(理)若bn=n()an,数列{bn}的前n项和为Tn,试比较Tn与的大小.
21611*
解:(1)由Sn=a2n+an(n?N)可得 2211a1=a21+a1,解得a1=1; 2211S2=a1+a2=a22+a2,解得a2=2; 22同理,a3=3,a4=4.
an1(2)Sn=+a2, ①
22nan-112
Sn-1=+an-1, ②
22①-②即得(an-an-1-1)(an+an-1)=0.
由于an+an-1≠0,所以an-an-1=1,又由(1)知a1=1,故数列{an}为首项为1,公差为1的等差数列,故an=n.
1n
(3)(理)由(2)知an=n,则bn=n()an=n,
22
111
故Tn=+2×()2+?+n()n, ①
22211111+
Tn=()2+2×()3+?+(n-1)()n+n()n1, ② 22222①-②得:
5
1T1122+(12)n-n(12)n+
12+n2n=+()2+?=1-2n+1, 故T2+nn=2-2n,
∴Tn+1
n+1-Tn=2n+1>0,
∴Tn随n的增大而增大.
当n=1时,T1
1=2
;当n=2时,T2=1;
当n=3时,T11222121
3=8=16>16,所以n≥3时,Tn>16.
综上,当n=1,2时,T2121
n<16;当n≥3时,Tn>16. 6
相关推荐: