第十四讲 幻方
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
【知识点解析】 一、幻方的概念:
所谓幻方是指在正方形方格表的每个方格内填入数,使得每行、每列和两条对角线上的各数之和相等;而阶数是指每行、每列所包含的方格数。
幻方题可以粗略的分为两种,一种是限制了所填入的数字,或者给出了需要填入的各个数字,或者已经填入一个或几个数字;另一种是对填入的数字没有任何限制,填对即可。
幻方又称为魔方,方阵等,它最早起源于我国。宋代数学家杨辉称之为纵横图。关于幻方的起源,我国有“河图”和“洛书”之说。相传在远古时期,伏羲氏取得天下,把国家治理得井井有条,感动了上苍,于是黄河中跃出一匹龙马,背上驮着一张图,作为礼物献给他,这就是“河图”了,是最早的幻方。伏羲氏凭借着“河图”而演绎出了八卦。后来大禹治洪水时,洛水中浮出一只大乌龟,它的背上有图有字,人们称之为“洛书”。“洛书”所画的图中共有黑、白圆圈45个。把这些连在一起的小圆和数目表示出来,得到1至9这九个数,恰组成一个三阶幻方。
二、幻方问题主要方法
1、累加法
利用累加的方法可以求出“幻和”和关键位置上的数字。通常将若干个“幻和”累加在
一起,再计算每一个位置上的重数,从而求出“幻和”和关键位置上的数字。
2、求出“幻和”和关键位置上的数字后,结合枚举法完成数阵图的填写,在填写数阵图的过程中注意从特殊的数字和位置入手。
3、比较法
利用比较的方法可以直接填出某些位置的数字。注意观察数阵图中相关联的“幻和”之间的关系,注意它们之间共同的部分,去比较不同的部分。
4、掌握好3阶幻方中的规律。
三阶幻方的性质:1.中心位置上的数等于幻和除以3;
2.角上得数等于和它不相邻的两条边上的数的平均数; 3.中心数两头的数等于中心数的2倍。
例1:我们先来一起解决三道难度相差很大的题目,目的在于总结出三阶幻方的若干重要性质。
如下图,将1—9填入3×3的方格表中,使得每行每列以及两条对角线上的三个数字之和都相等,你一共可以得到多少种填法?
第1题
例2:下图是一个三阶幻方,请说明幻和等于3倍的E 且D+F=2×E。
A B C 第3题 例3:上图是一个三阶幻方,请说明A+B=2×C。
例4:那么究竟我们总结出来的3条性质有什么用呢,
请完成下面的三阶幻方:
95 29 19 17 100 19 第4题(1)
第4题(2)
例5:下图是一个三阶幻方,请说明幻和等于3倍的E 且D+F=2×E。
例6:下图是一个三阶幻方,请说明A+B=2×C。
A B C 第3题
A档
1、请完成下面的三阶幻方:
95 29 19 17 100 19 第4题(1)
第4题(2)
2、求任一列、任一行以及两条对角线上的三个数之和都等于267的三阶质数幻方。
3、将1—12填入图中的12个区域内,使得每个圆圈内的4个数字之和都相等。
4
7 10 8
2 5
相关推荐: