ÒòΪһ°ãÇé¿öÏ£¬ÌݶÈÏòÁ¿Îª0µÄ»°ËµÃ÷Êǵ½ÁËÒ»¸ö¼«Öµµã£¬´ËʱÌݶȵķùֵҲΪ0.¶ø²ÉÓÃÌݶÈϽµËã·¨½øÐÐ×îÓÅ»¯Çó½âʱ£¬Ëã·¨µü´úµÄÖÕÖ¹Ìõ¼þÊÇÌݶÈÏòÁ¿µÄ·ùÖµ½Ó½ü0¼´¿É£¬¿ÉÒÔÉèÖøö·Ç³£Ð¡µÄ³£ÊýãÐÖµ¡£ ¡¾ÊµÑé½áÂÛ¡¿£¨½á¹û£© ÌݶÈϽµ·¨´¦ÀíһЩ¸´ÔӵķÇÏßÐÔº¯Êý»á³öÏÖÎÊÌ⣬ÀýÈçRosenbrockº¯Êý£º Æä×îСֵÔÚ ´¦£¬º¯ÊýֵΪ ¡£µ«ÊǴ˺¯Êý¾ßÓÐÏÁÕÍäÇúµÄɽ¹È£¬×îСµã ¾ÍÔÚÕâЩɽ¹ÈÖ®ÖУ¬²¢ÇÒ¹Èµ×ºÜÆ½¡£ÓÅ»¯¹ý³ÌÊÇÖ®×ÖÐεÄÏò¼«Ð¡Öµµã¿¿½ü£¬Ëٶȷdz£»ºÂý¡£¿¿½ü¼«Ð¡ÖµÊ±ÊÕÁ²ËٶȼõÂý¡£Ö±ÏßËÑË÷ʱ¿ÉÄÜ»á²úÉúһЩÎÊÌâ¡£¿ÉÄܻᡰ֮×ÖÐΡ±µØÏ½µ¡£ ¡¾ÊµÑéС½á¡¿£¨ÊÕ»ñÌå»á£© Õâ´ÎµÄʵÑ鱨¸æ£¬Ê¹µÃÎÒÃǶÔÕâЩËã·¨µÄ˼Ïë¸ü¼ÓÁ˽⣬ÔÚÑ¡ÔñÏßÐÔËÑË÷µÄ·½·¨Ê±£¬ÎÒÃÇÉî¿ÌÌå»áµ½¸÷Àà²ÎÊýÉèÖöԳÌÐòЧÂʵÄÖØÒªÐÔ£¬²»Í¬µÄÎÊÌâҪѡÓúÏÊʵIJÎÊýÀ´Çó½â£¬ÕâÑùʹµÃÎÊÌâÇó½â¼°³ÌÐòÔËÐеÄЧÂÊ×î¸ß¡£Í¨¹ý²»¶ÏµØ·ÔĿα¾£¬ÆÊÎö³ÌÐò£¬ÎÒÃÇ×îºóʵÏÖÁ˶ԳÌÐòµÄÐ޸ĺÍÍêÉÆ£¬¶ÔÌṩµÄÎÊÌâ×÷³öÁ˽ϺõĽâ´ð¡£×ܵÄÀ´Ëµ£¬¶ÔÎÞÔ¼Êø×îÓÅ»¯µÄÇó½â£¬Ã¿ÖÖ·½·¨ÔÚ½â¾ö²»Í¬µÄÎÊÌâÖÐЧ¹û²»Äܶ¼´ïµ½×îÓÅ£¬ËùÒÔÎÒÃÇÔÚʵ¼ÊÓ¦ÓÃÖУ¬Òª¸ù¾Ýʵ¼ÊÇé¿öÑ¡ÔñºÏÊʵķ½·¨£¬ÕùÈ¡×î´ó¿ÉÄܵľ¡¿ìµÄ½Ó½ü×îÓÅ¡£ ±¾´ÎʵÑé²»½öʹÎÒÃÇ»ù±¾Á˽âÁË×îÓÅ»¯µÄʵÓÃËã·¨µÄ½á¹¹¼°ÐÔÄÜ£¬¶øÇÒҲʹµÃÎÒÃǶÔmatlabµÄһЩ±à³Ì¼¼Çɸü¼ÓÊìϤ£¬ÊÕ»ñºÜ´ó¡£ Èý¡¢Ö¸µ¼½ÌʦÆÀÓï¼°³É¼¨£º ÆÀÓïµÈ¼¶ ÆÀ Óï 1.ʵÑ鱨¸æ°´Ê±Íê³É,×Ö¼£Çå³þ,ÎÄ×ÖÐðÊöÁ÷³©,Âß¼ÐÔÇ¿ 2.ʵÑé·½°¸Éè¼ÆºÏÀí
4
ÓÅ Á¼ ÖÐ ¼°²»¼°¸ñ ¸ñ 3.ʵÑé¹ý³Ì£¨ÊµÑé²½ÖèÏêϸ,¼Ç¼ÍêÕû,Êý¾ÝºÏÀí,·ÖÎö͸³¹£© 4ʵÑé½áÂÛÕýÈ·. ³É ¼¨£º Ö¸µ¼½ÌʦǩÃû£º ÅúÔÄÈÕÆÚ£º ¸½Â¼1£ºÔ´ ³Ì Ðò
ArmijoË㷨ʵÏÖ£º [plain] view plaincopy function mk = armijo( fun, xk, rho, sigma, gk ) assert( rho > 0 && rho < 1 ); assert( sigma > 0 && sigma < 0.5 ); mk = 0; max_mk = 100; while mk <= max_mk x = xk - rho^mk * gk; if feval( fun, x ) <= feval( fun, xk ) - sigma * rho^mk * norm( gk )^2 break; end mk = mk + 1; end return; ×îËÙϽµ·¨ÊµÏÖ£º [plain] view plaincopy function [opt_x, opt_f, k] = grad_descent( fun_obj, fun_grad, x0 ) max_iter = 5000; % max number of iterations EPS = 1e-5; % threshold of gradient norm % Armijo parameters rho = 0.5; sigma = 0.2; % initialization k = 0; xk = x0; while k < max_iter k = k + 1;
5
gk = feval( fun_grad, xk ); % gradient vector dk = -1 * gk; % search direction if norm( dk ) < EPS break; end yk = feval( fun_obj, xk ); fprintf( '#iter = ], xk = %.5f, F = %.5f\\n', k, xk, yk ); mk = armijo( fun_obj, xk, rho, sigma, gk ); xk = xk + rho^mk * dk; end fprintf( '----------------------\\n' ); if k == max_iter fprintf( 'Problem Not solved!\\n' ); else fprintf( 'Problem solved!\\n' ); end % record results opt_x = xk; opt_f = feval( fun_obj, xk ); return;
¸½Â¼2£ºÊµÑ鱨¸æÌîд˵Ã÷
1£®ÊµÑéÏîÄ¿Ãû³Æ£ºÒªÇóÓëʵÑé½Ìѧ´ó¸ÙÒ»Ö¡£
2£®ÊµÑéÄ¿µÄ£ºÄ¿µÄÒªÃ÷È·£¬Òª×¥×¡Öص㣬·ûºÏʵÑé½Ìѧ´ó¸ÙÒªÇó¡£ 3£®ÊµÑéÔÀí£º¼òҪ˵Ã÷±¾ÊµÑéÏîÄ¿ËùÉæ¼°µÄÀíÂÛ֪ʶ¡£ 4£®ÊµÑé»·¾³£ºÊµÑéÓõÄÈí¡¢Ó²¼þ»·¾³¡£
5£®ÊµÑé·½°¸£¨Ë¼Â·¡¢²½ÖèºÍ·½·¨µÈ£©£ºÕâÊÇʵÑ鱨¸æ¼«ÆäÖØÒªµÄÄÚÈÝ¡£¸ÅÀ¨Õû¸öʵÑé¹ý³Ì¡£ ¶ÔÓÚÑéÖ¤ÐÔʵÑ飬ҪдÃ÷ÒÀ¾ÝºÎÖÖÔÀí¡¢²Ù×÷·½·¨½øÐÐʵÑ飬ҪдÃ÷ÐèÒª¾¹ýÄö²½ÖèÀ´ÊµÏÖÆä²Ù×÷¡£¶ÔÓÚÉè¼ÆÐÔºÍ×ÛºÏÐÔʵÑ飬ÔÚÉÏÊöÄÚÈÝ»ù´¡ÉÏ»¹Ó¦¸Ã»³öÁ÷³Ìͼ¡¢Éè
6
¼ÆË¼Â·ºÍÉè¼Æ·½·¨£¬ÔÙÅäÒÔÏàÓ¦µÄÎÄ×Ö˵Ã÷¡£¶ÔÓÚ´´ÐÂÐÔʵÑ飬»¹Ó¦×¢Ã÷Æä´´ÐÂµã¡¢ÌØÉ«¡£
6£®ÊµÑé¹ý³Ì£¨ÊµÑéÖÐÉæ¼°µÄ¼Ç¼¡¢Êý¾Ý¡¢·ÖÎö£©£ºÐ´Ã÷¾ßÌåʵÑé·½°¸µÄ¾ßÌåʵʩ²½Ö裬°üÀ¨ÊµÑé¹ý³ÌÖеļǼ¡¢Êý¾ÝºÍÏàÓ¦µÄ·ÖÎö¡£
7£®ÊµÑé½áÂÛ£¨½á¹û£©£º¸ù¾ÝʵÑé¹ý³ÌÖеõ½µÄ½á¹û£¬×ö³ö½áÂÛ¡£ 8£®ÊµÑéС½á£º±¾´ÎʵÑéÐĵÃÌå»á¡¢Ë¼¿¼ºÍ½¨Òé¡£
9£®Ö¸µ¼½ÌʦÆÀÓï¼°³É¼¨£ºÖ¸µ¼½ÌʦÒÀ¾ÝѧÉúµÄʵ¼Ê±¨¸æÄÚÈÝ£¬¸ø³ö±¾´ÎʵÑ鱨¸æµÄÆÀ¼Û¡£
7
Ïà¹ØÍÆ¼ö£º