量即可.
7.【2019年高考北京卷理数】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网
格纸上小正方形的边长为1,那么该几何体的体积为__________.
【答案】40
【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱MPD1A1?NQC1B1之后余下的几何体,
则几何体的体积V?4?31??2?4??2?4?40. 2【名师点睛】本题首先根据三视图,还原得到几何体,再根据题目给定的数据,计算几何体的体积.属于中等题.(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.
8.【2019年高考北京卷理数】已知l,m是平面?外的两条不同直线.给出下列三个论断:
①l⊥m;
②m∥?;
③l⊥?.
以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________. 【答案】如果l⊥α,m∥α,则l⊥m.
【解析】将所给论断,分别作为条件、结论,得到如下三个命题: (1)如果l⊥α,m∥α,则l⊥m,正确;
(2)如果l⊥α,l⊥m,则m∥α,不正确,有可能m在平面α内; (3)如果l⊥m,m∥α,则l⊥α,不正确,有可能l与α斜交、l∥α. 故答案为:如果l⊥α,m∥α,则l⊥m.
【名师点睛】本题主要考查空间线面的位置关系、命题、逻辑推理能力及空间想象能力.将所给论断,分别作为条件、结论加以分析即可.
9.【2019年高考天津卷理数】已知四棱锥的底面是边长为2的正方形,侧棱长均为5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________. 【答案】
π 4【解析】由题意,四棱锥的底面是边长为2的正方形,侧棱长均为5,借助勾股定理,可知四棱锥的高为5?1?2.
若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心,故圆柱的高为1,圆柱的底面半径为
21, 2π?1?故圆柱的体积为π????1?. 4?2?【名师点睛】根据棱锥的结构特点,确定所求的圆柱的高和底面半径.注意本题中圆柱的底面半径是棱锥底面对角线长度的一半、不是底边棱长的一半.
10.【2019年高考江苏卷】如图,长方体ABCD?A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E?BCD
的体积是 ▲ .
【答案】10
【解析】因为长方体ABCD?A1B1C1D1的体积为120,所以AB?BC?CC1?120, 因为E为CC1的中点,所以CE?1CC1, 2由长方体的性质知CC1?底面ABCD,
所以CE是三棱锥E?BCD的底面BCD上的高, 所以三棱锥E?BCD的体积V?111111?AB?BC?CE???AB?BC?CC1??120?10. 3232212【名师点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.
11.AA1=4,AB=2,【2019年高考全国Ⅰ卷理数】如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,∠BAD=60°,
E,M,N分别是BC,BB1,A1D的中点.
(1)证明:MN∥平面C1DE; (2)求二面角A?MA1?N的正弦值. 【答案】(1)见解析;(2)
10. 5【解析】(1)连结B1C,ME. 因为M,E分别为BB1,BC的中点,
所以ME∥B1C,且ME=
1B1C. 21A1D. 2又因为N为A1D的中点,所以ND=
由题设知A1B1?DC,可得B1C?A1D,故ME?ND, 因此四边形MNDE为平行四边形,MN∥ED. 又MN?平面EDC1,所以MN∥平面C1DE. (2)由已知可得DE⊥DA.
以D为坐标原点,DA的方向为x轴正方向,建立如图所示的空间直角坐标系D?xyz,则
A(2,0,0),A1(2,0,4),M(1,3,2),N(1,0,2),A1A?(0,0,?4),A1M?(?1,3,?2),
A1N?(?1,0,?2),MN?(0,?3,0).
??m?A1M?0设m?(x,y,z)为平面A1MA的法向量,则?,
??m?A1A?0???x?3y?2z?0,所以?可取m?(3,1,0).
?4z?0.????n?MN?0, 设n?(p,q,r)为平面A1MN的法向量,则???n?A1N?0.所以???3q?0,?可取n?(2,0,?1).
???p?2r?0.于是cos?m,n??m?n2315, ??|m‖n|2?5510. 5所以二面角A?MA1?N的正弦值为【名师点睛】本题考查线面平行关系的证明、空间向量法求解二面角的问题.求解二面角的关键是能够利用垂直关系建立空间直角坐标系,从而通过求解法向量夹角的余弦值来得到二面角的正弦值,属于常规题型.
12.【2019年高考全国Ⅱ卷理数】如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1
上,BE⊥EC1.
(1)证明:BE⊥平面EB1C1;
(2)若AE=A1E,求二面角B–EC–C1的正弦值. 【答案】(1)证明见解析;(2)3. 2【解析】(1)由已知得,B1C1?平面ABB1A1,BE?平面ABB1A1, 故B1C1?BE.
又BE?EC1,所以BE?平面EB1C1.
(2)由(1)知?BEB1?90?.由题设知Rt△ABE≌Rt△A1B1E,所以?AEB?45?, 故AE?AB,AA1?2AB.
以D为坐标原点,DA的方向为x轴正方向,|DA|为单位长,建立如图所示的空间直角坐标系D–xyz,
相关推荐: