(1)记Qi为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是 . (2)记pi为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是 .
三、解答题
15.(13分)在△ABC中,∠A=60°,c=a. (1)求sinC的值;
(2)若a=7,求△ABC的面积.
16.(14分)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=(1)求证:M为PB的中点; (2)求二面角B﹣PD﹣A的大小;
(3)求直线MC与平面BDP所成角的正弦值.
,AB=4.
17.(13分)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.
(1)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;
(2)从图中A,B,C,D四人中随机选出两人,记ξ为选出的两人中指标x的值大于1.7的人数,求ξ的分布列和数学期望E(ξ);
(3)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)
18.(14分)已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点. (1)求抛物线C的方程,并求其焦点坐标和准线方程; (2)求证:A为线段BM的中点. 19.(13分)已知函数f(x)=excosx﹣x.
(1)求曲线y=f(x)在点(0,f(0))处的切线方程; (2)求函数f(x)在区间[0,
]上的最大值和最小值.
20.(13分)设{an}和{bn}是两个等差数列,记cn=max{b1﹣a1n,b2﹣a2n,…,bn﹣ann}(n=1,2,3,…),其中max{x1,x2,…,xs}表示x1,x2,…,xs这s个数中最大的数. (1)若an=n,bn=2n﹣1,求c1,c2,c3的值,并证明{cn}是等差数列; (2)证明:或者对任意正数M,存在正整数m,当n≥m时,使得cm,cm+1,cm+2,…是等差数列.
>M;或者存在正整数m,
2017年北京市高考数学试卷(理科)
参考答案与试题解析
一、选择题.(每小题5分)
1.(5分)若集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},则A∩B=( ) A.{x|﹣2<x<﹣1}
B.{x|﹣2<x<3} C.{x|﹣1<x<1} D.{x|1<x<3}
【分析】根据已知中集合A和B,结合集合交集的定义,可得答案. 【解答】解:∵集合A={x|﹣2<x<1},B={x|x<﹣1或x>3}, ∴A∩B={x|﹣2<x<﹣1} 故选:A.
【点评】本题考查的知识点集合的交集运算,难度不大,属于基础题.
2.(5分)若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是( ) A.(﹣∞,1) B.(﹣∞,﹣1) C.(1,+∞) D.(﹣1,+∞)
【分析】复数(1﹣i)(a+i)=a+1+(1﹣a)i在复平面内对应的点在第二象限,可得解得a范围.
【解答】解:复数(1﹣i)(a+i)=a+1+(1﹣a)i在复平面内对应的点在第二象限, ∴
,解得a<﹣1.
,
则实数a的取值范围是(﹣∞,﹣1). 故选:B.
【点评】本题考查了复数的运算法则、几何意义、不等式的解法,考查了推理能力与计算能力,属于基础题.
3.(5分)执行如图所示的程序框图,输出的S值为( )
A.2 B. C. D.
【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.
【解答】解:当k=0时,满足进行循环的条件,执行完循环体后,k=1,S=2, 当k=1时,满足进行循环的条件,执行完循环体后,k=2,S=, 当k=2时,满足进行循环的条件,执行完循环体后,k=3,S=, 当k=3时,不满足进行循环的条件, 故输出结果为:, 故选:C.
【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.
4.(5分)若x,y满足A.1
B.3
C.5
D.9
,则x+2y的最大值为( )
【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最值即可. 【解答】解:x,y满足
的可行域如图:
,可得A(3,3),
由可行域可知目标函数z=x+2y经过可行域的A时,取得最大值,由目标函数的最大值为:3+2×3=9.
相关推荐: