µÚÒ»·¶ÎÄÍø - רҵÎÄÕ·¶ÀýÎĵµ×ÊÁÏ·ÖÏíÆ½Ì¨

ÍêÕûword°æ£¬¡¶×Ô¶¯¿ØÖÆÔ­Àí¡·ÊÔ¾í¼°´ð°¸£¨Ó¢ÎÄ10Ì×£©,ÍÆ¼öÎĵµ

À´Ô´£ºÓû§·ÖÏí ʱ¼ä£º2025/10/2 19:43:44 ±¾ÎÄÓÉloading ·ÖÏí ÏÂÔØÕâÆªÎĵµÊÖ»ú°æ
˵Ã÷£ºÎÄÕÂÄÚÈݽö¹©Ô¤ÀÀ£¬²¿·ÖÄÚÈÝ¿ÉÄܲ»È«£¬ÐèÒªÍêÕûÎĵµ»òÕßÐèÒª¸´ÖÆÄÚÈÝ£¬ÇëÏÂÔØwordºóʹÓá£ÏÂÔØwordÓÐÎÊÌâÇëÌí¼Ó΢ÐźÅ:xxxxxxx»òQQ£ºxxxxxx ´¦Àí£¨¾¡¿ÉÄܸøÄúÌṩÍêÕûÎĵµ£©£¬¸ÐлÄúµÄÖ§³ÖÓëÁ½⡣

¢µ Calculate the transfer function for the following Bode diagram of the minimum phase. (15%) dB w 0.1 1 4 8 16 -40 -20 0dB/dec 20 0 ¢¶ For the system show as follows, G(s)?4,H(s)?1, (16%)

s(s?5)¢Ù Determine the system output c(t) to a unit step, ramp input.

¢Ú Determine the coefficient KP, KV and the steady state error to r(t)?2t.

¢· Plot the Bode diagram of the system described by the open-loop transfer function elements G(s)?

10(1?s), H(s)?1. (12%)

s(1?0.5s)¢±

G1G2?(1?G2H2)C(S)? R(S)1?G1H1?G2H2?G1G2H3?H2?G1G2H1H2?G2H2H3¢²R=0, L=5

s0.05(10s?1)(s?1)(?1)4¢µG(s)? 12s(1?s)1641541¢¶c(t)?1?e?t?e?4t c(t)?t??e?t?e?4t KP??, KV?0.8,

3ess?2.5

34312AUTOMATIC CONTROL THEOREM (7)

¢± Consider the system shown in Fig.1. Obtain the closed-loop transfer function R C(S)E(S), . £¨16%£© R(S)R(S)C G3 Fig.1 G1 G2

¢² The characteristic equation is given

E 1?GH(S)?S6?4S5?4S4?4S3?7S2?8S?10?0. Discuss the distribution of the closed-loop poles. (10%)

¢³ Sketch the root-locus plot for the system GH(S)?K(S?1). (The gain K is S3assumed to be positive.)

¢Ù Determine the breakaway point and K value.

¢Ú Determine the value of K at which root loci cross the imaginary axis. ¢Û Discuss the stability. (15%)

¢´ Show that the steady-state error in the response to ramp inputs can be made zero, if the closed-loop transfer function is given by:

an?1s?anC(s)?n ;H(s)?1 £¨12%£© R(s)s?a1sn?1???an?1s?an

¢µ Calculate the transfer function for the following Bode diagram of the minimum phase.

-40 dB -20dB/dec

w £¨15%£©

w1 w2 w3

-40

¢¶ Sketch the Nyquist diagram (Polar plot) for the system described by the open-loop transfer function GH(S)?0.1s?1, and find the frequency and phase such that

s(0.2s?1)magnitude is unity. £¨16%£©

¢· The stability of a closed-loop system with the following open-loop transfer function GH(S)?K(T2s?1) depends on the relative magnitudes of T1 and T2. 2s(T1s?1)Draw Nyquist diagram and determine the stability of the system. ( K?0T1?0T2?0) ¢±

C(S)G1?G1G2G3R(S)?2?GG 1?1G2?G2G3?G1G2G3¢²R=2, I=2,L=2

?22(s?1)¢µG(s)??1s2(s

??1)3¢¶??0.986rad/s???95.5o

16%£© £¨

ÍêÕûword°æ£¬¡¶×Ô¶¯¿ØÖÆÔ­Àí¡·ÊÔ¾í¼°´ð°¸£¨Ó¢ÎÄ10Ì×£©,ÍÆ¼öÎĵµ.doc ½«±¾ÎĵÄWordÎĵµÏÂÔØµ½µçÄÔ£¬·½±ã¸´ÖÆ¡¢±à¼­¡¢ÊղغʹòÓ¡
±¾ÎÄÁ´½Ó£ºhttps://www.diyifanwen.net/c1y4ik7w8bf47hq70zb090vngk58yua010gr_5.html£¨×ªÔØÇë×¢Ã÷ÎÄÕÂÀ´Ô´£©
ÈÈÃÅÍÆ¼ö
Copyright © 2012-2023 µÚÒ»·¶ÎÄÍø °æÈ¨ËùÓÐ ÃâÔðÉùÃ÷ | ÁªÏµÎÒÃÇ
ÉùÃ÷ :±¾ÍøÕ¾×ðÖØ²¢±£»¤ÖªÊ¶²úȨ£¬¸ù¾Ý¡¶ÐÅÏ¢ÍøÂç´«²¥È¨±£»¤ÌõÀý¡·£¬Èç¹ûÎÒÃÇ×ªÔØµÄ×÷Æ·ÇÖ·¸ÁËÄúµÄȨÀû,ÇëÔÚÒ»¸öÔÂÄÚ֪ͨÎÒÃÇ£¬ÎÒÃǻἰʱɾ³ý¡£
¿Í·þQQ£ºxxxxxx ÓÊÏ䣺xxxxxx@qq.com
ÓåICP±¸2023013149ºÅ
Top