优质文档
2??ax1?lnx1?x1?0a(x1?x2)?(lnx1?lnx2)?(x12?x22)?0 ∴? 两式相减得:2??ax2?lnx2?x2?0∴a?lnx1?lnx2?(x1?x2) ……………………9分
x1?x2∴h'(x0)?h'(?x1??x2)?a?1?2(?x1??x2) ?x1??x2?lnx1?lnx2lnx1?lnx211?(x1?x2)??2(?x1??x2)??(2??1)(x1?x2)? x1?x2?x1??x2x1?x2?x1??x2∵
????0且
????1 ∴2??1?0 ∵
0?x1?x2 ∴
(2??1)(x1?x2)?0………………11分
研究:lnx1?lnx2xx?x1?的符号,即判断ln1?12的符号.
x1?x2?x1??x2x2?x1??x2令t?x1xx?xt?1t?1,t?(0,1),ln1?12?lnt?,t?(0,1) ,设H(t)?lnt?x2x2?x1??x2?t???t??1(?t??)??(t?1)11?2t2?(2???1)t??2???∴H'(t)?? tt(?t??)2(?t??)2t(?t??)2222t?方法(一)设F(t)??t?(2???1)t??,其对称轴为:1?2??1?2?(1??)1?2???1??1 2?22?22?2222∴F(t)在(0,1)上单调减,则F(t)?F(1)???2???1???(???)?1?0,即H'(t)?0在(0,1)上恒成立 ∴H(t)在(0,1)上单调增 ∴H(t)?H(1)?0,即xx?x21ln1?? 0……………14分 x2?x??x12∵x1?x2?0 ∴lnx1?lnx21??0 x1?x2?x1??x2优质文档
优质文档
∴lnx1?lnx21?(2??1)(x1?x2)??0,即h'(x0)?0 x1?x2?x1??x2∴在点M(x0,h(x0))处的切线斜率为正. ……………………16分
?2t2?(2???1)t??2(t?1)(?2t??2)?方法(二)H'(t)? t(?t??)2t(?t??)222∵????0,0?t?1 ∴t?1?0,?t???0 ∴H'(t)?0在(0,1)上恒成立
∴H(t)在(0,1)上单调增 ∴H(t)?H(1)?0,即lnx1x?x?12?0 ……………14分 x2?x1??x2∵x1?x2?0 ∴lnx1?lnx21??0 x1?x2?x1??x2∴lnx1?lnx21?(2??1)(x1?x2)??0,即h'(x0)?0 x1?x2?x1??x2∴在点M(x0,h(x0))处的切线斜率为正. ……………………16分
优质文档
相关推荐: