第一范文网 - 专业文章范例文档资料分享平台

2020届高考数学(理)二轮复习专题检测:(5)平面向量 Word版含答案

来源:用户分享 时间:2025/8/27 5:54:19 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

(5)平面向量

1、在△ABC中,AD为BC边上的中线,E为AD的中点,则EB?( ) A.3AB?1AC 44 B.1AB?3AC

44C.3AB?1AC

44 D.1AB?3AC

442、已知O、A、B为平面上三点,点C分有向线段AB所成的比为2,则( )

12A.OC?OA-OB

3321C.OC?OA-OB

3312B. OC?OA?OB

3321 D.OC?OA?OB

333、如图,在正方形ABCD中,点E是DC的中点,点F是BC的一个三等分点,那么EF?( )

A.

11AB?AD 23B.D.

11AB?AD 4212AB?AD 2311C.AB?AD

324、如图,在△ABC中, AN?( )

21NC,P是BN上一点,若AP?tAB?AC,则实数t的值为33

2 32B.

51C.

63D.

4A.

5、已知向量a??1,2?,b??1,0?,c??3,4?,若?为实数, a??b//c,则?= ( )

??

1 31B.

2C. 2 D. 3?

A.

uuuruuur6、已知在边长为2的等边△ABC中,向量a,b满足AB?a,BC?a?b,则下列式子错误的

是( ) A.2a?b?2

B.b?23 22C.a??a?b??2

2D. a?b??6

7、设向量a?(m,0),b?(1,1),且b?a?a?b,则m?( ) A.2

D.-1

uuruuruuur8、已知△ABC是边长为2的等边三角形,P为平面△ABC内一点,则PA?(PB?PC)的最小值是( )

B.1

C.-2

34A.? B.?2 C.? D.?1

239、已知向量a?(1,2),b?(?2,?4),c?5,若(a?b)?c?A.30?

B.60?

C.120?

5,则a与c的夹角为() 2D.150?

rrrrr10、已知向量a?(1,m),b?(3,?2) ,且(a?b)?b,则m?( )

A.-8 B.-6 C.6 D.8

11、已知向量a=(-4,3),b=(6,m),且a?b,则m=__________. 12、若向量a,b满足:a?1,(a?b)?a,(2a?b)?b,则b?________.

uuuruuruur13、在等腰直角三角形ABC上(包括边界)有一点P,AB?AC?2,PA?PB?1,则PC的取

值范围是 。

14、在Rt△AOB中,?AOB?90,OA?1,OB?2,OC平分?AOB且与AB相交于点C,则OC在OA上的投影为___。

15、已知平面向量a???1,2?,b??2,m? 1.若a?b,求a?2b;

2.若m?0,求a?b与a?b夹角的余弦值.

答案以及解析

1答案及解析: 答案:A

解析:在△ABC中,AD为BC边上的中线,E为AD的中点,

EB?AB?AE?AB?故选A

2答案及解析: 答案:B

11131AD?AB??AB?AC?AB?AC 22244??解析:∵点C分有向线段AB所成的比为2, ∴AC?2CB,∴OC?OA?2OB?OC

??12∴3OC?OA?2OB∴OC?OA?OB

23综上所述,答案为B

3答案及解析: 答案:D 解析:

4答案及解析: 答案:C 解析:

5答案及解析: 答案:B 解析:

6答案及解析: 答案:C

uuuruuuruuuruuur2a?b?AC?2,A正确; 解析:AC?AB?BC?2a?b,则

uuuruuura??a?b??AB?BC??2,C错误;

2020届高考数学(理)二轮复习专题检测:(5)平面向量 Word版含答案.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c1zbch253255uqa87qzsz8c83h0epna01639_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top