2016年12月23日三角函数综合练习题初中数学组卷
参考答案与试题解析
一.选择题(共10小题)
1.(2016?安顺)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是( )
A.2
B.
C.
D.
【分析】根据勾股定理,可得AC、AB的长,根据正切函数的定义,可得答案.
【解答】解:如图:由勾股定理,得 AC=
,AB=2
,BC=
,
,
∴△ABC为直角三角形, ∴tan∠B=故选:D.
【点评】本题考查了锐角三角函数的定义,先求出AC、AB的长,再求正切函数.
2.(2016?攀枝花)如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD=( )
=,
第9页(共26页)
A.
B.
C.
D.
【分析】连接CD,可得出∠OBD=∠OCD,根据点D(0,3),C(4,0),得OD=3,OC=4,由勾股定理得出CD=5,再在直角三角形中得出利用三角函数求出sin∠OBD即可. 【解答】解:∵D(0,3),C(4,0), ∴OD=3,OC=4, ∵∠COD=90°, ∴CD=
=5,
连接CD,如图所示: ∵∠OBD=∠OCD, ∴sin∠OBD=sin∠OCD=故选:D.
=.
【点评】本题考查了圆周角定理,勾股定理、以及锐角三角函数的定义;熟练掌握圆周角定理是解决问题的关键.
3.(2016?三明)如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是( )
第10页(共26页)
A.msin35° B.mcos35° C. D.
【分析】根据正弦定义:把锐角A的对边a与斜边c的比叫做∠A的正弦可得答案. 【解答】解:sin∠A=∵AB=m,∠A=35°, ∴BC=msin35°, 故选:A.
【点评】此题主要考查了锐角三角函数,关键是掌握正弦定义.
4.(2016?绵阳)如图,△ABC中AB=AC=4,∠C=72°,D是AB中点,点E在AC上,DE⊥AB,则cosA的值为( )
,
A.
B.
C.
D.
【分析】先根据等腰三角形的性质与判定以及三角形内角和定理得出∠EBC=36°,∠BEC=72°,AE=BE=BC.再证明△BCE∽△ABC,根据相似三角形的性质列出比例式求出AE,然后在△ADE中利用余弦函数定义求出cosA的值. 【解答】解:∵△ABC中,AB=AC=4,∠C=72°, ∴∠ABC=∠C=72°,∠A=36°, ∵D是AB中点,DE⊥AB, ∴AE=BE,
∴∠ABE=∠A=36°,
∴∠EBC=∠ABC﹣∠ABE=36°, ∠BEC=180°﹣∠EBC﹣∠C=72°, ∴∠BEC=∠C=72°, ∴BE=BC, ∴AE=BE=BC.
第11页(共26页)
=,
设AE=x,则BE=BC=x,EC=4﹣x. 在△BCE与△ABC中,
,
∴△BCE∽△ABC, ∴
=
,即
=, (负值舍去), .
解得x=﹣2±2∴AE=﹣2+2
在△ADE中,∵∠ADE=90°, ∴cosA=故选C.
【点评】本题考查了解直角三角形,等腰三角形的性质与判定,三角形内角和定理,线段垂直平分线的性质,相似三角形的判定与性质,难度适中.证明△BCE∽△ABC是解题的关键.
5.(2016?南宁)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是( )
=
=
.
A.5sin36°米 B.5cos36°米 C.5tan36°米 D.10tan36°米
【分析】根据等腰三角形的性质得到DC=BD=5米,在Rt△ABD中,利用∠B的正切进行计算即可得到AD的长度.
【解答】解:∵AB=AC,AD⊥BC,BC=10米, ∴DC=BD=5米,
在Rt△ADC中,∠B=36°, ∴tan36°=故选:C.
【点评】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.
第12页(共26页)
,即AD=BD?tan36°=5tan36°(米).
相关推荐: