(I?A)?1?1?32?
?????301???11?1?? 由矩阵乘法运算得
2? ?1?32??25???4?????X?(I?A)B???301??01????9?15????????11?1?3056???????15.设矩阵
01??12?11?,求(1);(2)(IA?2?1?14??2?1??,B???A???0?20?1??01?????31??14?1?2??A)B. (1)
1A?21200314?11?127200014?113=
17211131701013?1?14?1?110?2?1?0?2?1??25
0?20?2(2)因为 (I?A)=??0?1?
?1?4???22?0211?????1?4?30????20所以 (I0?A)B=???1??11????1?4??2?1???22???0211??01???????1?4?30??1?2??????20??54???. ??25??5?3?????90???6.设矩阵
?012?,解矩阵方程
?,B??213?A??114??356???????2?11??AX?B?.
0解:因为 ??2100??114010? ???2100??114010???01?2?11001??0?3?70?21?????1?102?110??1005?32??5?32?????,得 ?1?? ??012100???0107?42?A??7?42??00?13?21??001?32?1???32?1????????5?32???2?3??13?18?. 所以X?A?1B???????7?42???15???16?29???32?1??36???713???????7设矩阵
?1?12?,求(1)?A???2?35???3?24??1?1012?21?100A,(2)A?1.解
1)
1?1221?1?1
A?2?35?0?13?241?0?1(2)利用初等行变换得
100? ?1?12100??1?12?2?35010???0?11?210??????3?24001??????01?2?301?100??1?12?1?12100?
?????0?11?210????01?12?10??00?1?511?????0015?1?1??即
A?1??201?
????7?2?1???5?1?1??0??10?53??10?53? 8 A??13?,B??12?,且XA?B,求X.?1310??131??25????23??(AI)??01????1?21???21???25??0??0?1????012得出A?1???53???BA?1??12?2?1??,于是X????53???113??????2??2?1????43???123??23例2.己知AX?B,且A???357????,B???58??.求X.?5810????01??
9.设矩阵
?23?1??123?A??,求:(1);(2)A?1. ?0?11???,B???112?AB??001????012??解:(1)因为23?1
A?0?11??2001
123011
B?112?112??1101201212??1所以 AB?AB?2.
(2)因为
?23?1100??AI????0?11010?
???001001???230101??1001/23/2?1所以
?1/23/2?1?.
???0?1001?1????11?A?1??1?????0100??0?1?001001????001001????001???10.已知矩阵方程X?AX?B,其中??1?1?,求X.
A??010?,
??111??B???20????103???5?3????解:因为(I?A)X?B,且
?1?10100?100?(I?A?I)???10?1010???1?10?01?1?110???10?2001???????01?2?101??
?10?1010??10002?1
????01?1?110?????010?12?1????00?10?11????00101?1?? 即
?02?1?
(I?A)?1????12?1???01?1????1?? 所以
?02?1??1?1???13?
?????X?(I?A)B????12?1??20????24???01?1????5?3?????33???111.设向量组?1?(1,1,?5,2)?,?48,?16,4)?,?3?(?3,?2,4,?1)?,?2?(?4,?(2,3,1,?1)?,求这
个向量组的秩以及它的一个极大线性无关组. 解:因为
(?1 ?2 ?3 ?4)=??1?4?32?813???4?32???1??20?57???16?5??1??01???0?4?007?7????0??142?1????00?11???0 所以,r(?1,?2,?3,?4) = 3. 它的一个极大线性无关组是 ?1,?3,?4(或?2,?3,?4).
1⒉设
??1A???121??10314?,求
AC?BC.
??0?12??,B??????21?1??,C??3?21?002????解:
AC?BC?(A?B)C???024???201???114? ??3?21??6?410??????002????2210?? 13写出4阶行列式
1020中元素a,a?14364142的代数余子式,并求其值. 02?533110:
020a41?(?1)4?1436?0 120a?1)4?2
42?(?136?452?530?5314求矩阵?1011011??的秩.
?1101100???1012101???2113201???4?32? 0?11?002??000??解
?1?1??1??2011011??r?r?112??r1?r3?101100??2r1?r4?0??????0012101???113201??0011011?1?101?1?1??0011?10??000000?011011??1?01?101?1?1?r2?r4????????00011?10???1?112?2?1??0011011?1?101?1?1??0011?10??0011?10??1?0r3?r4???????0??0? R(A)?3
15.用消元法解线性方程组
?x1?3x2?2x3?x4?3x?8x?x?5x?1234???2x1?x2?4x3?x4???x1?4x2?x3?3x4?6 ?0??12?2?1?3A????2???13r4?r31?r42?3?2?16??3r?r?112?2r1?r3??8150?r1?r4?0??????01?41?12???4?1?32??0?3?2?16?3r?r?121?5r2?r3?178?18??r1?r4?0?????0?5?8?10???1?3?48??023?48?178?18??02739?90??0?10?1226?0042?124?1015?46??01?14??0011?33?019?1?0??????0??001923?48??11?0?r3178?18?3???????003?312???056?13??001923?48??19r?r?131??7r3?r2?178?18??5r3?r4?0??????001?14???056?13??0?11?0r4?11?????0??0?124??42r?r?141??0?15r4?r21015?46?r4?r3???????001?14???001?3??000422?100?1??0101??001?3?000?x1?2? ?方程组解为?x2??1
??x3?1??x4??3A2.求线性方程组 的全部解.
解: 将方程组的增广矩阵化为阶梯形
?1?3?1?31?11??1?31?11??01??27?21?2??010?10?????????00?1?43?0?1230?21??????22??00?2?48?02640?1?11??1?3?0?10????01220??00??660??001?11?
0?10??220??000? 方程组的一般解为
?x1?1?5x4? (其中x4为自由未知量) ?x2?x4?x??x4?3令x4=0,得到方程的一个特解
X0?(1000)?.
方程组相应的齐方程的一般解为
?x1?5x4 ??x2?x4 (其中x4为自由未知量)
?x??x4?3令x4=1,得到方程的一个基础解系
X1?(51?11)?.
于是,方程组的全部解为 X?X0?kX1(其中k为任意常数)
2.当?取何值时,线性方程组
?x1?x2?2x3?x4??2
?2x?x?7x?3x?6?1234?9x?7x?4x?x???1234?1有解,在有解的情况下求方程组的全部解. 解:将方程组的增广矩阵化为阶梯形
相关推荐: