第一范文网 - 专业文章范例文档资料分享平台

浙江省2017—2019年中考数学真题汇编专题11:圆(解析卷)

来源:用户分享 时间:2025/5/19 5:57:22 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

【考点】圆的综合题

【分析】(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,据此得证; (2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG=AC=CE=CD,证△BEF∽△BGA得得;

(3)①设AB=5k、AC=3k,由BC﹣AC=AB?AC知BC=2DC=AC=3k、MC=BC=

2

2

2

2

2

=,即BF?BG=BE?AB,将BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC代入可

k,连接ED交BC于点M,Rt△DMC中由

k,在Rt△COM中,

2

2

k求得DM==k,可知OM=OD﹣DM=3﹣

2

2

2

2

由OM+MC=OC可得答案.②设OM=d,则MD=3﹣d,MC=OC﹣OM=9﹣d,继而知BC=(2MC)=36﹣4d、AC=DC=DM+CM=(3﹣d)+9﹣d,由(2)得AB?AC=BC﹣AC,据此得出关于d的二次函数,利用二次函数的性质可得答案. 解:(1)∵四边形EBDC为菱形, ∴∠D=∠BEC,

∵四边形ABDC是圆的内接四边形, ∴∠A+∠D=180°, 又∠BEC+∠AEC=180°, ∴∠A=∠AEC, ∴AC=AE;

(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,

2

2

2

2

2

2

2

2

2

由(1)知AC=CE=CD, ∴CF=CG=AC,

∵四边形AEFG是⊙C的内接四边形, ∴∠G+∠AEF=180°, 又∵∠AEF+∠BEF=180°,

∴∠G=∠BEF, ∵∠EBF=∠GBA, ∴△BEF∽△BGA, ∴

=

,即BF?BG=BE?AB,

∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC, ∴(BC﹣AC)(BC+AC)=AB?AC,即BC﹣AC=AB?AC; (3)设AB=5k、AC=3k, ∵BC﹣AC=AB?AC, ∴BC=2

k,

2

2

2

2

连接ED交BC于点M, ∵四边形BDCE是菱形, ∴DE垂直平分BC, 则点E、O、M、D共线,

在Rt△DMC中,DC=AC=3k,MC=BC=∴DM=

∴OM=OD﹣DM=3﹣

=

k, k,

2

2

2

k,

在Rt△COM中,由OM+MC=OC得(3﹣解得:k=∴BC=2

k=4

或k=0(舍), ;

2

2

2

k)+(

2

k)=3,

22

②设OM=d,则MD=3﹣d,MC=OC﹣OM=9﹣d, ∴BC=(2MC)=36﹣4d, AC=DC=DM+CM=(3﹣d)+9﹣d, 由(2)得AB?AC=BC﹣AC =﹣4d+6d+18 =﹣4(d﹣)+

2

2

2

2

2

2

2

2

2

2

2

2

2

2

∴当d=,即OM=时,AB?AC最大,最大值为∴DC=∴AC=DC=∴AB=

2

, ,此时

=.

【点评】本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及

菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点.

浙江省2017—2019年中考数学真题汇编专题11:圆(解析卷).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c1zzyy7wnla3gzju6vsv034ka295j0v00d0c_7.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top