第一范文网 - 专业文章范例文档资料分享平台

《信息论基础》试卷(期末)(B2卷)

来源:用户分享 时间:2025/6/1 14:28:12 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

五、(16分)设一个离散无记忆信源的概率空间为

它们通过干扰信道,信道输出端的接收符号集为Y??b1,b2?,已知信道传输概率如下图所示。

试计算:

(1)信源X中事件x1和x2分别含有的自信息量;(2分) (2)收到信息yj(j?1,2)后,获得的关于x1的信息量;(2分) (3)信源X的信息熵;(2分)

(4)条件熵H?Y|x1?,H?Y|x2?;(2分)

(5)共熵H(XY)、信道疑义度H(X|Y)和噪声熵H(Y|X);(6分) (6)收到消息Y后获得的关于信源X的平均信息量。(2分)

《信息论基础》试卷第5页

《信息论基础》试卷第6页

六、(12分)设某信道的传递矩阵为

(1)若输入符号P?x1??P?x2??1/4,P?x3??1/2,求H(X|Y)和I(X;Y)。 (2)计算该信道的信道容量,并说明达到信道容量的最佳输入概率分布。

《信息论基础》试卷第7页

七、(16分)有一个二元二阶马尔可夫信源,其信源符号集为{0,1},初始概率大小为

12P(0)?,P(1)?。条件概率定为

33P(0|00)?P(1|11)?0.8

P(1|00)?P(0|11)?0.2

P(0|01)?P(0|10)?P(1|01)?P(1|10)?0.5

(1) 画出该信源的状态转移图。 (2) 计算达到稳定后状态的极限概率。 (3) 该马尔可夫信源的极限熵H?。

(4) 计算达到稳定后符号0和1的概率分布。

《信息论基础》试卷答案

一、填空题(共25分,每空1分)

1、连续信源的绝对熵为 无穷大。(或??????p?x?lgp?x?dx?limlg?)

???2、离散无记忆信源在进行无失真变长信源编码时,编码效率最大可以达到 1 。

3、无记忆信源是指 信源先后发生的符号彼此统计独立 。

4、离散无记忆信源在进行无失真变长编码时,码字长度是变化的。根据信源符号

的统计特性,对概率大的符号用 短 码,对概率小的符号用 长 码,这样平均

码长就可以降低,从而提高 有效性(传输速率或编码效率) 。

5、为了提高系统的有效性可以采用 信源编码 ,为了提高系统的可靠

《信息论基础》试卷第8页

搜索更多关于: 《信息论基础》试卷(期末)(B2卷) 的文档
《信息论基础》试卷(期末)(B2卷).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c204nr1pftw4oweh0piwo_2.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top