∴△MCN∽△DBE, ∴==, ∴MN=2CN. 设CN=a,则MN=2a. ∵∠CDE=∠DCF=45°, ∴△CNF,△MGF均为等腰直角三角形, ∴NF=CN=a,CF=a, ∴MF=MN+NF=3a, ∴MG=FG=a, ∴CG=FG﹣FC=a, ∴M(a,﹣3+a). 代入抛物线y=(x﹣3)(x+1),解得a=, ∴M(,﹣); 若点N在射线DC上,如备用图2,MN交y轴于点F,过点M作MG⊥y轴于点G.∵∠CMN=∠BDE,∠CNM=∠BED=90°, ∴△MCN∽△DBE, ∴==, ∴MN=2CN. 设CN=a,则MN=2a. ∵∠CDE=45°, ∴△CNF,△MGF均为等腰直角三角形, ∴NF=CN=a,CF=a, ∴MF=MN﹣NF=a, ∴MG=FG=a, ∴CG=FG+FC=a, ∴M(a,﹣3+a). 代入抛物线y=(x﹣3)(x+1),解得a=5, ∴M(5,12); (Ⅱ)当点M在对称轴左侧时. ∵∠CMN=∠BDE<45°, ∴∠MCN>45°, 而抛物线左侧任意一点K,都有∠KCN<45°, ∴点M不存在. 综上可知,点M坐标为(,﹣)或(5,12). 17
本 题是二次函数的综合题型,其中涉及到的知识点有二次函数图象上点的坐标特征, 二次函数的性质,运用待定系数法求一次函数、二次函数的解析式,勾股定理,等腰直角三角形、相似三角形的判定与性质,综合性较强,有一定难度.(2)中第②问进行分类讨论及运用数形结合的思想是解题的关键. 18
点评:
相关推荐: