四川省绵阳市2019-2020学年中考数学考前模拟卷(2)
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图所示,在平面直角坐标系中A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B绕点B顺时针旋转180°,得到△BP2C;把△BP2C绕点C顺时针旋转180°,得到△CP3D,依此类推,则旋转第2017次后,得到的等腰直角三角形的直角顶点P2018的坐标为( )
A.(4030,1) C.(4033,1)
B.(4029,﹣1) D.(4035,﹣1)
2.如图,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,则tan∠BCD的值为( )
A.
4 5B.
5 4C.
4 3D.
3 43.cos30?的值是?nnnn? A.
2 2B.
3 3C.
1 2D.
3 24.已知,如图,AB是⊙O的直径,点D,C在⊙O上,连接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度数是( )
A.75° B.65° C.60° D.50°
5.如图,已知∠1=∠2,要使△ABD≌△ACD,需从下列条件中增加一个,错误的选法是( )
A.∠ADB=∠ADC B.∠B=∠C C.AB=AC D.DB=DC
6.下列运算结果正确的是( ) A.3a﹣a=2 B.(a﹣b)2=a2﹣b2 C.a(a+b)=a2+b D.6ab2÷2ab=3b
7.如图,在矩形ABCD中,连接BD,点O是BD的中点,若点M 在AD边上,连接MO并延长交BC边于点M’,连接MB,DM’则图中的全等三角形共有( )
A.3对 B.4对 C.5对 D.6对
8.一个几何体的三视图如图所示,那么这个几何体是( )
A. B. C. D.
9.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价20%,现售价为a元,则原售价为( ) A.(a﹣20%)元
B.(a+20%)元
C.a元
D. a元
10.将2001×1999变形正确的是( ) A.20002﹣1
B.20002+1
C.20002+2×2000+1 D.20002﹣2×2000+1
11.如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是( )
A. B. C. D.
12.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.
若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是 .
14.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是( )
?x?y?78A.?
3x?2y?30?15.若分式
?x?y?78B.?
2x?3y?30??x?y?30C.?
2x?3y?78??x?y?30D.?
3x?2y?78?的值为零,则x的值为________.
16.如图,已知△ABC中,∠ABC=50°,P为△ABC内一点,过点P的直线MN分別交AB、BC于点M、N.若M在PA的中垂线上,N在PC的中垂线上,则∠APC的度数为_____
17.AB=4,BC=9,在矩形ABCD中,点E是AD边上一动点,将边AB沿BE折叠,点A的对应点为A′,若点A′到矩形较长两对边的距离之比为1:3,则AE的长为_____. 18.如图,直线y?x?4与双曲线y?k(k≠0)相交于A(﹣1,a)、B两点,在y轴上找一点P,当xPA+PB的值最小时,点P的坐标为_________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD于点E,DA平分∠BDE.
(1)求证:AE是⊙O的切线;
(2)如果AB=4,AE=2,求⊙O的半径. 20.(6分)解分式方程:
23x?=1 x?22?x21.(6分)某企业为杭州计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表: 月份x 价格y1(元/件) 1 560 2 580 3 600 4 620 5 640 6 660 7 680 8 700 9 720 随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1 与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)p2=﹣0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润.
22.(8分)如图,小巷左石两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D为1.5米,求小巷有多宽.
23.(8分)解方程:
14x2?2?=1. x?2x?4x?224.(10分)如图,在Rt△ABC中,∠C=90°,AC=请填空完成下列证明.
证明:如图,作Rt△ABC的斜边上的中线CD,
1AB.求证:∠B=30°. 21AB=AD ( ). 21∵AC=AB,
2则 CD=
∴AC=CD=AD 即△ACD是等边三角形. ∴∠A= °. ∴∠B=90°﹣∠A=30°.
25.(10分) “绿水青山就是金山银山”,北京市民积极参与义务植树活动.小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵):
1 1 2 3 2 3 2 3 3 4 3 3 4 3 3 5 3 4 3 4 4 5 4 5 3 4 3 4 5 6 (1)对以上数据进行整理、描述和分析: ①绘制如下的统计图,请补充完整;
②这30户家庭2018年4月份义务植树数量的平均数是______,众数是______;
(2)“互联网+全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有______户.
相关推荐: