第八章 多元函数微分法及其应用 §1极限与连续 1. 求下列极限: (1)limx?1y?0ln(x?ey)x?y22; ln(x?ey)x?y22解:初等函数在其定义域内连续。limx?1y?0=limx?1y?0ln(1?e0)1?022=ln2 (2)lim(3)lim2?xy?4xyxyxy?1?1x?0y?0 ?limx?0y?0?xy1?? 4xy(2?xy?4)x?0y?0 ?limx?0y?0xy(xy?1?1)?2 xy(4)limy?0sin(xy)sin(xy)=limx?2?1?2 x?2x?2yxyy?01212222(x?y)(x?y)1?cos(x?y)22(5)lim?lim2?0 22?lim22222xyxyx?0(x2?y2)exyex?0(x?y)ex?0y?0y?0y?0222.证明下列极限不存在 (1)limx?y; x?yx?0y?0解令y?kx则 x?yx?kx1?k??,不同的路径极限不同,故极限不存在。 limlimx?yx?kx1?kx?0x?0y?0y?0(2)limx2y2xy?(x?y)222. x?0y?0x2y2当y?x时lim22?1 2x?0xy?(x?y)y?04x44x2当y?2x时lim42?lim2?0,不同的路径极限不同,故极限不x?04x?xx?04x?1y?0y?0第 - 4 - 页 存在 3. 用定义证明:limxyx?y22?0. x?0y?0解:由xyx?y22?0?12(x?y2)xy?2?x2?y2,故对???0取???,x2?y2x2?y2当(x?0)2?(y?0)2??时xyx?y22?0??,故limxyx?y22?0 x?0y?0§2 偏导数 1. 求下列函数的偏导数: (1)z?xsin(x?y)?cos2(xy); ?z?sin(x?y)?xcos(x?y)?2cos(xy)[?sin(xy)y]?sin(x?y)?xcos(x?y)?ysin2xy?x?z?xcos(x?y)?2cos(xy)[?sin(xy)x]?xcos(x?y)?xsin2xy ?y(2)z?ln(xy) 解:z??ln(xy)?121?z111?,??ln(xy)?2()y? ?x2xy2xln(xy)1?z111???ln(xy)?2()x? ?y2xy2yln(xy)(3)z?lntan?e2x?y ?z1x11xx?(sec2)?e2x?y?2?cotsec2?2e2x?y ?xtanxyyyyyy?z1xxxxx?(sec2)(?2)?e2x?y??2cotsec2?e2x?y ?ytanxyyyyyyxy(4)z?(1?xy)y 第 - 5 - 页 解:关于x是幂函数故:?z?y(1?xy)y?1y?y2(1?xy)y?1, ?x关于y是幂指函数,将其写成指数函数z?eyln(1?xy),故: ?z1xy?eyln(1?xy)[ln(1?xy)?yx]?(1?xy)y(ln(1?xy)?) ?y1?xy1?xy(5)u?()z ?ux1zx?z()z?1?()z?1, ?xyyyy?uxxxzx?z()z?1(?2)??2()z?1,关于z是指数函数?yyyyyxy关于x是幂函数故关于y是幂函数故?uxx?()zln。(6)u?arctan(x?y)z ?zyy?u1z(x?y)z?1z?1?(x?y)?z? ?x1?[(x?y)z]21?[(x?y)z]2?u1z(x?y)z?1z?1?z(x?y)(?1)??z2?y1?[(x?y)]1?[(x?y)z]2?u1(x?y)zln(x?y)z?(x?y)ln(x?y)? ?z1?[(x?y)z]21?[(x?y)z]22.填空 ?x2?y2?(1)曲线?z?4在点(2, 4, 5)处的切线与x轴正向所成的倾角为 ?y?4?x2?y2解 法一:由偏导数的几何意义知:函数z?在点(2, 4)关于x的偏导4数就为 曲线在点(2, 4, 5)处的切线与x轴正向所成的倾角(记为?)的正切,即: tan???z2x?|(2,4),得tan??|(2,4)?1,故??。 ?x44第 - 6 - 页 ??x?x?解 法二:求曲线在点(2, 4, 5)处的切向量,将曲线参数化为?y?4,在?2x?z??16?4x??x的切向量为?1,0,?,故曲线在点(2, 4, 5)处的切向量为?1,0,1?,若记它与x2??轴正向所成的倾角为?,则cos??线与x轴正向所成的倾角为? 411?0?1222,故曲线在点(2, 4, 5)处的切(2)设f(x,y)?x?(y?1)arcsinx,则fx?(x,1)= y法一:f(x,1)?x?(1?1)arcsin法二fx?(x,y)?1?(y?1)1xdf(x,1)?x,故fx?(x,1)?x?1 1dxx?x1故fx?(x,1)?fx?(x,y)|?1 2yy?1?x?1????y?? z? z= . ?y2? x? y1111(3)设z?e1111?(?)xy,则x2?(?)1?(?)1?(?)?z?zxy2? z2? zxyxy由?e,?e,有x?y?2e?2z 22?xx?yy? x? y3.设 ?x2y2, (x, y)?(0, 0)?f(x,y)??(x2?y2)32 ?0, (x, y)?(0, 0) ?用定义证明:f(x,y)在(0, 0)处连续,且偏导数存在. 证明(1)用定义证明f(x,y)在(0, 0)处连续: x2y2(x2?y2)2由0?2232?2232?(x2?y2)12, (x?y)(x?y)第 - 7 - 页 故limf(x,y)?0?f(0,0),故f(x,y)在(0, 0)处连续 x?0y?0(2)fx(0,0)?limfy(0,0)?lim?x?0f(0??x,0)?f(0,0)0?0?lim?0 ?x?0?x?x?y?0f(0,0??y)?f(0,0)0?0?lim?0 ?x?0?y?y?2z?2z?2z4.求下列函数的二阶偏导数2, 2和: ?x?y?x?y(1)z?arctan?z??x1x y1y?z1xx, ??(?)??2222222?yyx?y?x?yx?y?x?1???1???y???y??2z??z?y??()?()?(y(x2?y2)?1)??y(x2?y2)?22x??2xy(x2?y2)?2222?x?x?x?xx?y?x第 - 8 - 页
相关推荐: