第一范文网 - 专业文章范例文档资料分享平台

天津市南开区2018年中考数学二模试卷(含解析)

来源:用户分享 时间:2025/5/24 14:11:10 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

A.4 B.3 C.2 D.1

【分析】由抛物线开口方向及对称轴位置、抛物线与y轴交点可判断①;由①知y=ax2﹣2ax+1,根据x=﹣1时y<0可判断②;由抛物线顶点在一次函数图象上知a+b+1=k+1,即a+b=k,结合b=﹣2a可判断③;根据0<x<1时二次函数图象在一次函数图象上方知ax2+bx+1>kx+1,即ax2+bx>kx,两边都除以x可判断④.

【解答】解:由抛物线的开口向下,且对称轴为x=1可知a<0,﹣由抛物线与y轴的交点在一次函数y=kx+1(k≠0)的图象上知c=1, 则abc<0,故①正确;

=1,即b=﹣2a>0,

由①知y=ax2﹣2ax+1,

∵x=﹣1时,y=a+2a+1=3a+1<0, ∴a<﹣,故②正确;

∵抛物线y=ax2+bx+c(a≠0)的顶点在一次函数y=kx+1(k≠0)的图象上, ∴a+b+1=k+1,即a+b=k, ∵b=﹣2a,

∴﹣a=k,即a=﹣k,故③正确;

由函数图象知,当0<x<1时,二次函数图象在一次函数图象上方, ∴ax2+bx+1>kx+1,即ax2+bx>kx, ∵x>0,

∴ax+b>k,故④正确; 故选:A.

【点评】本题考查了抛物线与x轴的交点,二次函数的性质,主要利用了二次函数的开口方向,对称轴,最值问题,以及二次函数图象上点的坐标特征.

二、填空题(3×6=18)

13.(3分)分解因式:x2﹣5x= x(x﹣5) . 【分析】直接提取公因式x分解因式即可. 【解答】解:x2﹣5x=x(x﹣5). 故答案为:x(x﹣5).

【点评】此题考查的是提取公因式分解因式,关键是找出公因式.

14.(3分)计算

×(

﹣2

)的结果等于 2

﹣2 .

【分析】利用二次根式的乘法法则运算. 【解答】解:原式==2

﹣2.

﹣2.

﹣2

故答案为2

【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.

15.(3分)有四张卡片,分别写有数﹣2,0,1,5,将它们背面朝上(背面无差别)洗匀后放在桌上,从中任意抽出两张,则抽出卡片上的数的积是正数的概率是

【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与数字积为正数的情况,再利用概率公式即可求得答案. 【解答】解:画树状图如下:

由树状图知,共有12种等可能结果,其中抽出卡片上的数字积为正数的结果为2种, 所以抽出卡片上的数字积为正数的概率为故答案为:.

【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.

=,

16.(3分)如图1,两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,得到图2,则阴影部分的周长为 2 .

【分析】根据两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A’B’D’的位置,得出线段之间的相等关系,进而得出OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2,即可得出答案.

【解答】解:∵两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,

∴A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′, ∴OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2; 故答案为:2.

【点评】此题主要考查了平移的性质以及等边三角形的性质,根据题意得出A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′是解决问题的关键.

17.(3分)如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为 (﹣,

) .

【分析】首先过D作DF⊥AF于F,根据折叠可以证明△CDE≌△AOE,然后利用全等三角形的性质得到OE=DE,OA=CD=1,设OE=x,那么CE=3﹣x,DE=x,利用勾股定理即可求出OE的长度,而利用已知条件可以证明△AEO∽△ADF,而AD=AB=3,接着利用相似三角形的性质即可求出

DF、AF的长度,也就求出了D的坐标. 【解答】解:如图,过D作DF⊥AO于F, ∵点B的坐标为(1,3), ∴BC=AO=1,AB=OC=3,

根据折叠可知:CD=BC=OA=1,∠CDE=∠B=∠AOE=90°,AD=AB=3, 在△CDE和△AOE中,

∴△CDE≌△AOE,

∴OE=DE,OA=CD=1,AE=CE, 设OE=x,那么CE=3﹣x,DE=x, ∴在Rt△DCE中,CE2=DE2+CD2, ∴(3﹣x)2=x2+12, ∴x=,

∴OE=,AE=CE=OC﹣OE=3﹣=, 又∵DF⊥AF, ∴DF∥EO, ∴△AEO∽△ADF,

∴AE:AD=EO:DF=AO:AF, 即:3=:DF=1:AF, ∴DF=

,AF=,

∴OF=﹣1=, ∴D的坐标为:(﹣,故答案为:(﹣,

).

).

【点评】此题主要考查了图形的折叠问题、相似三角形的判定与性质、全等三角形的判定与性

质以及坐标与图形的性质.解题的关键是把握折叠的隐含条件,利用隐含条件得到全等三角形和相似三角形,然后利用它们的性质即可解决问题.

18.(3分)如图,在每个小正方形的边长为1的网格中,A,B为格点 (Ⅰ)AB的长等于

(Ⅱ)请用无刻度的直尺,在如图所示的网格中求作一点C,使得CA=CB且△ABC的面积等于,并简要说明点C的位置是如何找到的 取格点P、N(使得S△PAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求.

【分析】(Ⅰ)利用勾股定理计算即可;

(Ⅱ)取格点P、N(S△PAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求. 【解答】解:(Ⅰ)AB=故答案为

=,

(Ⅱ)如图取格点P、N(使得S△PAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求.

故答案为:取格点P、N(S△PAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求.

【点评】本题考查作图﹣应用与设计,线段的垂直平分线的性质、等高模型等知识,解题的关键是学会利用数形结合的思想思考问题,属于中考常考题型.

三、解答题(66分) 19.(8分)解不等式组

天津市南开区2018年中考数学二模试卷(含解析).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c20ro97zs008az813jgo32teb88j4b1005rw_2.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top