第一范文网 - 专业文章范例文档资料分享平台

天津市南开区2018年中考数学二模试卷(含解析)

来源:用户分享 时间:2025/5/24 23:55:41 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

请结合题填空,完成本题的解答 (Ⅰ)解不等式①,得 x≥﹣1 (Ⅱ)解不等式②,得 x<3

(Ⅲ)把不等式①和②的解集在数轴上表示出来 (Ⅳ)原不等式组的解集为 ﹣1≤x<3

【分析】首先分别解出两个不等式的解集,再求其公共解集即可. 【解答】解:(Ⅰ)解不等式①,得:x≥﹣1, (Ⅱ)解不等式②,得:x<3,

(Ⅲ)把不等式①和②的解集在数轴上表示出来如下:

(Ⅳ)原不等式组的解集为:﹣1≤x<3, 故答案为:x≥﹣1、x<3、﹣1≤x<3.

【点评】此题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.

20.(8分)某校为了解学生每天参加户外活动的情况,随机抽查了一部分学生每天参加户外活动的时间情况,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题; (Ⅰ)在图①中,m的值为 20 ,表示“2小时”的扇形的圆心角为 54 度; (Ⅱ)求统计的这组学生户外运动时间的平均数、众数和中位数.

【分析】(Ⅰ)根据统计图中的数据可以求得m的值和表示“2小时”的扇形的圆心角的度数; (Ⅱ)根据条形统计图中的数据可以求得这组学生户外运动时间的平均数、众数和中位数. 【解答】解:(Ⅰ)m%=1﹣40%﹣25%﹣15%=20%, 即m的值是20,

表示“2小时”的扇形的圆心角为:360°×15%=54°, 故答案为:20、54;

(Ⅱ)这组数据的平均数是:众数是:1, 中位数是:1.

【点评】本题考查条形统计图、扇形统计图、加权平均数、中位数、众数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合思想解答.

21.(10分)如图,⊙O的直径AB的长为2,点C在圆周上,∠CAB=30°,点D是圆上一动点,DE∥AB交CA的延长线于点E,连接CD,交AB于点F.

=

(Ⅰ)如图1,当∠ACD=45°时,请你判断DE与⊙O的位置关系并加以证明; (Ⅱ)如图2,当点F是CD的中点时,求△CDE的面积.

【分析】(Ⅰ)连接OD,如图1,理由圆周角定理得到∠AOD=90°,则OD⊥AB,再理由平行线的性质得到OD⊥DE,然后根据直线与圆的位置关系的判定方法可判断DE为⊙O的切线; (Ⅱ)连接OC,如图1,利用垂径定理得到AB⊥CD,再利用圆周角定理得到∠COF=60°,则根据含30度的直角三角形三边的关系计算出OF=,CF=

,所以CD=2CF=

,AF=,接着证明

AF为△CDE的中位线得到DE=2AF=3,然后根据三角形面积公式求解. 【解答】解:(Ⅰ)DE与⊙O相切.、 理由如下:连接OD,如图1, ∵∠AOD=2∠ACD=2×45°=90°, ∴OD⊥AB, ∵DE∥AB, ∴OD⊥DE,

∴DE为⊙O的切线; (Ⅱ)连接OC,如图1, ∵点F是CD的中点, ∴AB⊥CD,CF=DF,

∵∠COF=2∠CAB=60°, ∴OF=OC=,CF=∴CD=2CF=

OF=

,AF=OA+OF=,

∵AF∥AD,F点为CD的中点, ∴DE⊥CD,AF为△CDE的中位线, ∴DE=2AF=3,

∴△CDE的面积=×3×

=

【点评】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d:则直线l和⊙O相交?d<r;直线l和⊙O相切?d=r;直线l和⊙O相离?d>r.也考查了圆周角定理和垂径定理.

22.(10分)某中学依山而建,校门A处有一斜坡AB,长度为13米,在坡顶B处看教学楼CF的楼顶C的仰角∠CBF=53°,离B点4米运的E处有一花台,在E处仰望C的仰角∠CEF=63.4°,CF的延长线交校门处的水平面于D点,FD=5米 (Ⅰ)求∠BAD的正切值;

(Ⅱ)求DC的长.(参考数据:tan53°≈,tan63.4°≈2)

【分析】(Ⅰ)过B作BG⊥AD于G,则四边形BGDF是矩形,求得BG=DF=5米,然后根据勾股定理求得AG,即可求得斜坡AB的坡度i. BF=(Ⅱ)在Rt△BCF中,

=

EF=,在Rt△CEF中,

=

,得到方程BF﹣EF=

﹣=4,解得CF=16,即可求得求DC=21.

【解答】解:(Ⅰ)过B作BG⊥AD于G, 则四边形BGDF是矩形, ∴BG=DF=5米, ∵AB=13米, ∴AG=∴tan∠BAD=

=12米, =1:2.4;

(Ⅱ)在Rt△BCF中,BF=在Rt△CEF中,EF=∵BE=4米, ∴BF﹣EF═

=4,

=

=,

解得:CF=16.

∴DC=CF+DF=16+5=21米.

【点评】本题考查了解直角三角形的应用﹣仰角和俯角问题,解直角三角形的应用﹣坡度和坡比问题,正确理解题意是解题的关键.

23.(10分)某文物古迹遗址每周都吸引大量中外游客前来参观,如果游客过多,对文物古迹会产生不良影响,但同时考虑到文物的修缮和保存费用的问题,还要保证有一定的门票收入,因此遗址的管理部门采取了升、降门票价格的方法来控制参观人数.在实施过程中发现:每周参观人数y(人)与票价x(元)之间怡好构成一次函数关系. (Ⅰ)根据题意完成下列表格 票价x(元)

10

15

x 18

参观人数y(人)7000 4500 ﹣500x+12000

3000

(Ⅱ)在这样的情况下,如果要确保每周有40000元的门票收入,那么每周应限定参观人数是多少?门票价格应定位多少元?

(Ⅲ)门票价格应该是多少元时,门票收入最大?这样每周应有多少人参观?

【分析】(Ⅰ)由题意可知每周参观人数y(人)与票价x(元)之间怡好构成一次函数关系,把点(10,7000)(15,4500)分别代入y=kx+b,求出k,b的值,即可把表格填写完整; (Ⅱ)根据参观人数×票价=40000元,即可求出每周应限定参观人数以及门票价格应定位; (Ⅲ)先得到二次函数,再配方法即可求解.

【解答】解:(I)设每周参观人数与票价之间的一次函数关系式为y=kx+b, 把(10,7000)(15,4500)代入y=kx+b中得

解得

∴y=﹣500x+12000, x=18时,y=3000,

故答案为:﹣500x+12000,3000;

(II)根据确保每周4万元的门票收入,得xy=40000 即x(﹣500x+12000)=40000 x2﹣24x+80=0 解得x1=20 x2=4

把x1=20,x2=4分别代入y=﹣500x+12000中 得y1=2000,y2=10000

因为控制参观人数,所以取x=20,y=2000

答:每周应限定参观人数是2000人,门票价格应是20元/人. (III)依题意有

x(﹣500x+12000)=﹣500(x2﹣24)=﹣500(x﹣12)2+72000, y=﹣500×12+12000=6000.

故门票价格应该是12元时门票收入最大,这样每周应有6000人参观.

【点评】此题考查了二次函数以及一次函数的应用,解答此类题目的关键是要注意自变量的取值还必须使实际问题有意义.

天津市南开区2018年中考数学二模试卷(含解析).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c20ro97zs008az813jgo32teb88j4b1005rw_3.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top