设函数f(x)=(x+1)ln(x+1),若对所有的x≥0,都有f(x)≥ax成立,求实数a的取值范围.
解法一:
令g(x)=(x+1)ln(x+1)-ax,
对函数g(x)求导数:g′(x)=ln(x+1)+1-a
令g′(x)=0,解得x=ea-1
-1, 5分
(i)当a≤1时,对所有x>0,g′(x)>0,所以g(x)在[0,+∞)上是增函数, 又g(0)=0,所以对x≥0,都有g(x)≥g(0),
即当a≤1时,对于所有x≥0,都有 f(x)≥ax. 9分
(ii)当a>1时,对于0<x<ea-1-1,g′(x)<0,所以g(x)在(0,ea-1
-1)是减函数,
又g(0)=0,所以对0<x<ea-1
-1,都有g(x)<g(0), 即当a>1时,不是对所有的x≥0,都有f(x)≥ax成立. 综上,a的取值范围是(-∞,1]. ……12分 解法二:令g(x)=(x+1)ln(x+1)-ax,
于是不等式f(x)≥ax成立即为g(x)≥g(0)成立. ……3分 对函数g(x)求导数:g′(x)=ln(x+1)+1-a
令g′(x)=0,解得x=ea-1
-1, ……6分
当x> ea-1
-1时,g′(x)>0,g(x)为增函数,
当-1<x<ea-1
-1,g′(x)<0,g(x)为减函数, 9分
所以要对所有x≥0都有g(x)≥g(0)充要条件为ea-1
-1≤0.
由此得a≤1,即a的取值范围是(-∞,1]. 9、已知函数f?x??x2?2x?alnx?x?0?,f?x?的导函数是f'?x?,对任意两个不相等的
正数x1,x2,证明:
(Ⅰ)当a?0时,
f?x1??f?x2?2?f??x1?x2??2??
(Ⅱ)当a?4时,f'?x'1??f?x2??x1?x2
分析:本小题主要考查导数的基本性质和应用,函数的性质和平均值不等式等知识及综合分析、
推理论证的能力,满分14分。 证明:(Ⅰ)由f?x??x2?2x?alnx 得f?x1??f?x2?2?12?x2?x2?11?a12????x????lnx1?lnx2?
1x2?2 ?12?x21?x2x1?x22??xx?alnx1x2 122 f??x1?x2??x1?x2?4x?x?2?????2???x?aln121?x22 2 而12?x212x1?x2?1?x22??4???x21?x22??2x1x2????? ① ?2?? 又?x2?221?x2??x1?x2??2x1x2?4x1x2
∴
x1?x2x?4 ② 1x2x1?x2 ∵xx1?x2x?x21x2?2 ∴lnx1x2?ln12
∵a?0 ∴alnxx1?x21x2?aln2 ③ 由①、②、③得
12?x2?x2x?x?x?x?2412??12x?alnx1x2??12???alnx1x2 1x2?2?x1?x2即f?x1??f?x2??f??x1?x2?2?2?
?(Ⅱ)证法一:由f?x??x2?2x?alnx,得f'?x??2x?2ax2?x ∴f'?x?x???2a?2?x1?x2?a1??f'2????2x1?2x2?a???2x2?2???x1?x2?2?22? 1x1??x2x2?x1x2x1x2f'?x'2?x1?x2?1??f?x2??x1?x2?2?x22?a?1 1x2x1x2下面证明对任意两个不相等的正数x2?x1?x2?1,x2,有2?x22?a?1恒成立
1x2x1x2即证a?x2?x1?x2?1x2?x成立
1x2∵x2?x1?x2?1x2?x?x41x2? 1x2x1x2设t?x1x2,u?x??t2?4t?t?0?,则u'?x??2t?4t2 令u'?x??0得t?32,列表如下:
t ?0,32? 32 ?32,??? u'?t? _ 0 ? u?t? ] 极小值334 Z u?t??334?3108?4?a ∴x2?x1?x2?1x2?x?a
1x2∴对任意两个不相等的正数x1,x2,恒有f'?x1??f'?x2??x1?x2
证法二:由f?x??x2?2?alnx,得f'2ax?x??2x?x2?x ∴f'?x'1??f?x???2x2a??2?2x2a??x?x?2?2?x1?x2??1?x2????2?2??12?a
1x1??x2x2?x21x22x1x2∵x1,x2是两个不相等的正数 ∴2?2?x1?x2?4x2x2?a?2??a4312xx?2??41x2?xx1x2?1x2?x1x2?3x 12设t?1,xu?t??2?4t3?4t2?t?0? 1x2则u'?t??4t?3t?2?,列表:
t ??0,2??2??3? 3 ?2u'?t? _ ?3,????? 0 ? u?t? ] 极小值3827 Z ∴u?3827?1 即 2?2?x1?x2?ax22?x?1 1x2x12∴f'?x1??f'?x2???x?x2?2?x1?x2?a12?x22?x?x1?x2 1x21x2即对任意两个不相等的正数x1,x'2,恒有f?x1??f'?x2??x1?x2
已知函数f(x)=ln(1+x)-x,g(x)=xlnx.
相关推荐: