【解析】(1)根据B类的人数和所占的百分比即可求出总数; (2)求出C的人数从而补全统计图;
(3)用A的人数除以总人数再乘以360°,即可得到圆心角α的度数;
(4)先设甲班学生为A1,A2,乙班学生为B1,B2,根据题意画出树形图,再根据概率公式列式计算即可.
【解答】解:(1)共调查的中学生数是:80÷40%=200(人), 故答案为:200;
(2)C类的人数是:200﹣60﹣80﹣20=40(人), 补图如下:
(3)根据题意得:α=故答案为:108°;
(4)设甲班学生为A1,A2,乙班学生为B1,B2,
×360°=108°,
一共有12种等可能结果,其中2人来自不同班级共有8种, ∴P(2人来自不同班级)=
=.
【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
类型五:统计概率与其它知识的应用 【同步练】
(枣庄市 2015 中考 -21)在大课间活动中,同学们积极参加体育锻炼,小明在全校随机抽取一部分同学就“我最喜爱的体育项目”进行了一次抽样调查.下面是他通过收集的数据绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:
(1)小明共抽取 名学生; (2)补全条形统计图;
(3)在扇形统计图中,“立定跳远”部分对应的圆心角的度数是 ; (4)若全校共有2130名学生,请你估算“其他”部分的叙述人数.
思路分析:
此题考查了条形统计图,扇形统计图,以及用样本估计总体,对于题(1)可根据要求画出统计图,根据跳绳的人数除以占的百分比即可得出抽取的学生总数;
对于题(2)根据总学生数,计算出踢毽子与其中的人数,补全条形统计图即可; 对于题(3)根据立定跳远占的百分比乘以360即可得到结果;
(4)由其他占的百分比,乘以2130即可得到结果 解题过程:
解:(1)根据题意得:15÷30%=50(名), 则小明共抽取50名学生;
(2)根据题意得:踢毽子人数为50×18%=9(名),其他人数为50×(1﹣30%﹣18%﹣32%)=10(名),
补全条形统计图,如图所示:
;
(3)根据题意得:360°×32%=115.2°,
则“立定跳远”部分对应的圆心角的度数是115.2°; (4)根据题意得“其他”部分的学生有2130×20%=426(名). 规律总结:
把握好条形统计图,扇形统计图,以及用样本估计总体等知识,弄清题中的数据是解本题的关键.
【达标检测】
1. (2016·黑龙江哈尔滨·8分)海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:
(1)本次调查共抽取了多少名学生?
(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;
(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?
【考点】条形统计图;用样本估计总体;扇形统计图.
【分析】(1)用条形图中演员的数量结合扇形图中演员的百分比可以求出总调查学生数;(2)用总调查数减去其他几个职业类别就可以得到最喜爱教师职业的人数;(3)利用调查学生中最喜爱律师职业的学生百分比可求出该中学中的相应人数.
【解答】解:(1)12÷20%=60, 答:共调查了60名学生. (2)60﹣12﹣9﹣6﹣24=9,
答:最喜爱的教师职业人数为9人.如图所示:
(3)×1500=150(名)
答:该中学最喜爱律师职业的学生有150名.
2. (2016·湖北荆门·12分)秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理并制作成了如下不完整的图表:
分 数 段 60≤x<频数 9 频率 a
相关推荐: