1
当n=1时,a1=也适合上式,
31∴an=n. 3
nn
(2)bn==n·3,
an
∴Sn=1×3+2×3+3×3+…+n·3, 则3Sn=3+2×3+3×3+…+n·3∴③-④得:
-2Sn=3+3+3+…+3-n·3=
-31-3
n2
3
n
n+1
2
3
4
n+1
2
3
n
③ ④
,
-n·3
n+1
3nn+1
=-(1-3)-n·3.[:
23n·3n
∴Sn=(1-3)+
423=+4
-4
n+1
.
重难点突破
n+1
【例5】已知等差数列{an}的前3项和为6,前8项和为-4. (1)求数列{an}的通项公式; (2)设bn=(4-an)q
n-1
(q≠0,n∈N),求数列{bn}的前n项和Sn.
*
解析 (1)设{an}的公差为d,则由已知得
?a1+a2+a3=6,????a1+a2+…+a8=-4,
n-1
?3a1+3d=6,?
即???8a1+28d=-4,
解得a1=3,d=-1,故an=3-(n-1)=4-n. (2)由(1)知,bn=n·q
0
1
,
2
n-1
于是Sn=1·q+2·q+3·q+…+n·q若q≠1,上式两边同乘以q. qSn=1·q+2·q+…+(n-1)·q
1
2
1
2
n-1
,
+n·q,
n-1
n
两式相减得:(1-q)Sn=1+q+q+…+q1-qn
=-n·q. 1-q∴Sn=
1-q-
n
n
-n·q
n
n·qn·q
=2-1-q
nn+1
--
+
2
n
+1. 若q=1,则Sn=1+2+3+…+n=
+2=
,
??∴S=?nq
??
n
+
2
n+1
+-
n2
,
-
+1
巩固提高
1.已知数列{an}的前n项和Sn=an+bn(a、b∈R),且S25=100,则a12+a14等于( ) A.16 B.8 C.4
D.不确定
2
1
2
解析:由数列{an}的前n项和Sn=an+bn(a、b∈R),可得数列{an}是等差数列,S25=解得a1+a25=8,所以a1+a25=a12+a14=8.
答案:B
2.数列{an}的通项公式an=A.11 C.120 解析:∵an=
1
1n+n+1B.99 D.121
,若前n项的和为10,则项数为( )
+a25
2
=100,
=n+1-n,
n+n+1
∴Sn=n+1-1=10,∴n=120. 答案:C
3.若数列{an}的通项公式是an=(-1)(3n-2),则a1+a2+…+a10=
( )
A.15
B.12 D.-15
10
n
C.-12
解析:a1+a2+…+a10=-1+4-7+10+…+(-1)·(3×10-2)=(-1+4)+(-7+10)+…+[(-1)·(3×9-2)+(-1)·(3×10-2)]=3×5=15.
答案:A
111
4.若数列{an}为等比数列,且a1=1,q=2,则Tn=++…+的结果可化为( )
a1a2a2a3anan+11
A.1-n
41?2?
C.?1-n? 3?4?解析:an=2
n-1
9
10
1
B.1-n 21?2?
D.?1-n? 3?2?
,设bn=
1?1?2n-1
=??, anan+1?2?
1?1?3?1?2n-1
则Tn=b1+b2+…+bn=+??+…+??
2?2??2?11?
1-n???2?4?2?1?==?1-n?.
13?4?1-
4答案:C
5.数列{an}、{bn}都是等差数列,a1=5,b1=7,且a20+b20=60.则{an+bn}的前20项的和为( ) A.700 C.720
B.710 D.730
解析:由题意知{an+bn}也为等差数列,所以{an+bn}的前20项和为:S20=
+7+2答案:C
=720.
1
+b1+a20+b20
2
=
相关推荐: