uuuruuuruuuruuuruuuruuur417.解:(Ⅰ)∵5AC?BC?5AC?BCcosC?4AC?BC,∴cosC?, ……2分
53∴sin?A?B??sinC? ……2分
5urr1(Ⅱ)设x?tanA?0,m?n?sinAcosB?cosAsinB? ①
53sin?A?B??sinAcosB?cosAsinB? ②
521∴①+②得sinAcosB?,cosAsinB?, ……4分
55x∴tanAcotB?2,故tanB?,
2xx?x?tanB2?3x??3即x2?4x?2?0 又tan?A?B???1?xtanB1?x?x2?x242∴x?2?6,∴tanA?2?6 ……4分
18.解:(Ⅰ)P5?2??C5?0.8??1?0.8??0.05 ……4分
223(Ⅱ)1?P5?0??P5?1??1?C5?0.8??1?0.8??C5?0.8??1?0.8??0.99
001154 ……4分 (Ⅲ)所求概率为C4?0.8??1?0.8??0.8?0.02 ……4分
1319.解:(Ⅰ)∵ABCD?A1B1C1D1为直四棱柱,∴AA1?平面ABCD,
又AB?AD,CB?CD,∴AC?BD,AC是A1C在平面ABCD上的射影,由三垂线定理知A1C?BD ……3分 (Ⅱ)连接A1E,C1E,∵E为AC与BD的交点且AC?BD,
∴A1E?BD,C1E?BD,
∴?A1EC1为二面角A1?BD?C1的平面角, ……2分
o∵AB?BC,∴AD?DC,∴?A1D1C1??ADC?90,
又∵A1D1?AD?2,C1D1?CD?23,AA1?3,AC?BD, ∴AC11?4,AE?1,EC?3,∴A1E?2,C1E?23,
222o在△A1EC1中,AC11?A1E?EC1,∴?A1EC1?90,
∴二面角A1?BD?C1为90 ……3分
(Ⅲ)∵AD?DC,∴AD?平面CD1,过B作BF∥AD交CD于F,
则?FBC1为所求的角,BF?平面CD1,
∵AD?AB?2,AD?DC,AC?BD,∴CD?CB?23, ∴?BCD?60,在Rt△BCF中
ooBF?BCsin60o?3,∵BC1?15,∴cos?FBC1?BF15 ?BC15∴AD与BC1所成角的余弦值为
20.解:(Ⅰ)设函数f?x???15 ……4分 513x?2ax2?3a2x?b ?0?a?1,b?R? 3f??x???x2?4ax?3a2,令f??x??0得f?x?的单增区间为?a,3a?,
令f??x??0得f?x?的单减区间为???,a?和?3a,???,
4f?x?极小值?f?a???a3?b,f?x?极大值?f?3a??b ……4分
3(Ⅱ)由f??x??a得?a??x?4ax?3a?a ① ……2分
22∵0?a?1,∴1?a?2a,
22∴f??x???x?4ax?3a在?a?1,a?2?上是减函数,
∴当x??a?1,a?2?时,f??x?max?f??a?1??2a?1,
f??x?min?f??a?2??4a?4,于是对任意的x??a?1,a?2?,
不等式①恒成立等价于?∴
??a?4a?4, ……4分
?a?2a?144?a?1,又∵0?a?1,∴?a?1 ……2分 55221.解:(Ⅰ)设AB所在直线方程为y?kx?m,抛物线方程为x?2py
且A?x1,y1?,B?x2,y2?,由题目可知x1?0,x2?0,
?p?0?
2∴x1?x2?4k即x1?x2?4k,把y?kx?m代入x?2py整理得
x2?2pkx?2pm?0,∴x1?x2?2pk?4k,∴p?2,
∴所求抛物线方程为x?4y ……4
分
(Ⅱ)设C?x3,2??12??12?x3?,D?x4,x4?, 4??4?过抛物线上C,D两点的切线方程分别为y?∴两条切线的交点M的坐标为?112112 y?x4x?x4 x3x?x32424?x3?x4x3x4?,?, ……2分 24??22设CD所在直线方程为y?nx?1,代入x?4y得x?4nx?4?0,
∴x3x4??4,∴M的坐标为??x3?x4?,?1?,
?2?∴点M的轨迹方程为y??1, ……2分
uuur?12?uuur?12?又∵FC??x3,x3?1?,FD??x4,x4?1?,
?4??4?uuuruuur1212122∴FC?FD?x3x4?x3?x4??x3?x4??1
444121222?x3x4?1??x3?x4?1???x3?x4???2, ……2分
4422uuuur2?x?x?212x3?x4?2x3x4234而FM???x3?x4?4??4???2, ?424??uuuruuurFC?FD∴uuuur2??1 ……2分
FM22.解:(Ⅰ)当x?A即0?x?1时,m?N?可知m?1?x?0,∴
mx?0,
m?1?xm?1??x?1??mxmx?1??0,∴?1即f?x??A, 又
m?1?xm?1?xm?1?x故对任意x0?A,有x1?f?x0??A,由x1?A可得x2?f?x1??A, 由x2?A可得x3?f?x2??A,
依次类推可一直继续下去,从而产生一个无穷数列?xn? ……4分
(Ⅱ)由xn?1?f?xn??∴an?1?则bn?1?mxn1m?111???, 可得
m?1?xnxn?1mxnmm?11m?1an?,即an?1?1??an?1?,令bn?an?1, mmmm?112m?1m?1bn,b1?a1?1??1??1?, mx1mmn?1?m?1?∴?bn?为等比数列,∴bn????m?m?m?1?b1即an????1 ……4分
m??mn1??1??(Ⅲ)即证3??1???1?4,需证2??1???3,当m?N?时有
?m??m?111?1?0?1?1m0?1?11??C?C??L?C??C?C??2 m?mmm?m????mmmm?m??m??m?m?m?1?L?m?k?1?1111k?1?当k?2时,由Cm ????????kmk!k!k?1k?m?km00∴当m?2时
1?1?1??1??11??11??1?1?1????L???3??3 ????????m223m?1mm????????1??又m?1时2??1???2?3,
?m?∴对任意的m?N?都有
mm11?xm? ……6分 43
相关推荐: