9答案及解析: 答案:D
解析:在△ABC中,sinC?sin??π??A?B????sin?A?B??sinAcosB?cosAsinB结合正弦定理可知acosB?bcosA?c,联立acosB?bcosA?a?cc3c,解得cosA?,cosB?所以24b4bacosA?bcosB?acosBc3c?b?4b4b?1?a?3b??1?2?a?3b?23当且仅当a?3b时,等
??3cba3baba3??3a?4b号成立,故选D
10答案及解析: 答案:A
解析:b2?c2?3bc?a2, b2?c2?a23bc3, ?cosA???2bc2bc2由0?A?π,可得A?bc?π, 63, 43,
3a2,?sinBsinC?3sin2A?1333?5π?,即sinCcosC??sin??C?sinC??1?cos2C??,解得tan2C?2444?6?又0?C?5ππ4ππ2π,?2C?或,即C?或,故选A. 63633
11答案及解析: 答案:
7 9sinA,即8sinA?3cos2A?3?3sin2A.又A为锐角,cosA127?sinA?或sinA??3(舍),?cos2A?1?2sin2A?1??.
399
12答案及解析:
解析: 由3cosA?8tanA?0,得3cosA?8答案:3 解析:
13答案及解析: 答案:12
b2?c2?a212解析:由余弦定理得cosA??,b?c2?a2?bc①
2bc2a()2?c2?32a2?c2?b22如图,在△ABD中,cosB?,在△ABC中,cosB?,
a2ac2??c2a()2?c2?32a2?c2?b22所以, ?a2ac2??c2整理得a2?2b2?2c2?36②将②代入①中,可得b2?c2?bc?36. 又b2?c2?2bc(当且仅当b?c时,等号成立),所以36?3bc,即bc?12.
14答案及解析: 答案:33 解析:在△ABC中??3b?a?cosC?cosA, 由正弦定理得?3sinB?sinA?cosC?sinCcosA,
?3sinBcosC?sinCcosA?sinAcosC?sin?A?C?. QA?B?C?π,?3sinBcosC?sinB.
122. 又sin?0,?cosC?,sinC?33Qc是a,b的等比中项,?c2?ab.
2,?absinC?32,
Q△ABC的面积为312则c2?ab?9.由余弦定理可得c2?a2?b2?2abcosC, 即9??a?b??28ab,?a?b?33. 3
15答案及解析: 答案:?0,?
2???3?解析:设?BAD??CAD??,AC?m,m?0,CD?n,
则AB?3m,AD?tm.由三角形角平分线的性质可知
222ABBD??3,?BD?3n. ACCD在△ABD中,由余弦定理得?3n???3m???tm??2?3m?tmcos?①,
22在△ACD中,由余弦定理得n?m??tm??2m?tmcos?②,
23联立①②消去n2,得8t2m2?12tm2cos?,?t?cos?.
2?π??3?Q???0,?,?0?cos??1,?t??0,?.
?2??2?
16答案及解析:
1答案:
3解析:由A?π??B?C?,得sinA?sin?B?C?,
由已知得2sinCcosB?2sin?B?C??sinB,所以2sinBcosC?sinB?0.
1由sinB?0,可得2cosC?1?0,即cosC??.
22π因为C?(0,π),所以C?,
3故c2?a2?b2?2abcosC?a2?b2?ab?2ab?ab?3ab.
12又c?3ab,所以?3ab??3ab,即ab?,
31当且仅当a?b时取等号,故ab的最小值为.
3
17答案及解析:
答案:1 解析:
18答案及解析: 答案:(1)∵sin2A?(3131cosB?sinB)(cosB?sinB)?sin2B 2222313?cos2B?sin2B?sin2B? 444∴sinA??π3,又A为锐角,所以A? 23π,所以cb?24,② 3(2)由AB?AC?12可得, cbcosA?12① 由1知A?由余弦定理知a2?b2?c2?2bccosA,将a?27及① 代入可得c2?b2?52③
③+②
?2,得(c?b)2?100,所以c?b?10
因此,c,b是一元二次方程t2?10t?24?0的两根, 解此方程并由c?b知,c?6,b?4 解析:
19答案及解析:
π.(2).10?27. 3bc,得
解析:(1).由正弦定理?sinBsinC答案:(1).C?3sinBcosC?sinBsinC,
在△ABC中,因为sinB?0,所以3cosC?sinC 故tanC?3, 又因为0?C?π,所以C?π. 3
(2).由已知,得1absinC?63.
2π又C?,所以ab?24. 3由已知及余弦定理,得a2?b2?2abcosC?28, 所以a2?b2?52,从而(a?b)2?100.即a?b?10 又c?27,所以△ABC的周长为10?27.
20答案及解析:
aba3ba3a,及可得所以 tan A?3.?? ,? ,
cosAsinAcosAsinBsinAsinBπ又A?,所以A?。 (0,π)3答案:(1)由正弦定理(2)由(1)得sinA?313,又S△ABC?bcsinA?所以bc?12,在△ABC中,bc?33,
242由余弦定理a2?b2 ?c2?2bccosπ?b2?c2?12?14,得b2?c2?26,又32 b2?c2?(b?c)?2bc?26,所以b?c?52,所以△ABC的周长为a?b?c?14?52。解析:
21答案及解析:
答案:(1)由m?n,得m?n?0,即2bcosA?acosC ?ccosA,由正弦定理得
2sinBcosA?sinAcosC?sinCcosA,即2sinBcosA?sin. (A?C)∵sin(A?C)?sin(π?B)?sinB,∴2sinBcosA?sinB. ∵0<B<π,∴sinB?0,.∴cosA?∵0<A<π,∴A?(2)由S△ABC又sinA??1. 2π。 31?bcsinA?3. 23,得S△ABC3,∴bc?4 22∵b?c?5,∴由余弦定理得a2?b2 ?c2?2bccosA?(b?c)?3bc?13,∴a?13. 解析:
22答案及解析:
11答案:(1)如图,在△ECD中,S△ECD?CE?CD?sin?DCE??5?3?sin?DCE?36,
22所以sin?DCE?36,
?26?1. 因为0???DCE?90?,所以cos?DCE?1???5???5??1由余弦定理得DE2?CE2?CD2?2?CE?CD?cos?DCE?25?9?2?5?3??28,
5所以DE?27.
2
(2)因为?ACB?90?,所以sin?ACD?sin(90???DCE)?cos?CE?1. 5
35?ADCD1?在△ADC中,由正弦定理得,即1sinA,所以sinA?.
sin?ACDsinA35解析:
相关推荐: