② 气相物质的输送。由于有气体存在时会与气相物质发生碰撞,因此气相物质的输送往往在真空中进行。
③ 气相物质的沉积。 气相物质在基片上的沉积是一个凝聚过程。根据凝聚条件的不同,可以形成单晶膜、多晶膜或者非晶态膜。
3.分子组装方法
(1)LB膜技术
LB膜技术就是先将双亲分子在水面上形成有序的紧密单分子薄膜,再利用端基的亲水、疏水作用将单层膜转移到固体基片上。由于基片与分子之间的吸附作用,单分子层级成绩在固体基片上。这样基片反复的进出水面就可以形成多层膜。LB膜随着转移方式的不同可得到X型、Y型和Z型。LB膜的制备是将悬浮在气/液界面的单分子膜转移到基片表面。最常用的方法是垂直拉提法、水平拉提法、亚相降低法、扩散吸附法和接触法。
(2)分子自组装技术
分子自组装(SA)薄膜技术是一种在平衡条件下通过建的相互作用,自发结缔形成性能稳定的、结构完整的薄膜的方法。SA成膜技术主要包括基于化学吸附的自组装成膜技术,和基于物理吸附的离子自组装膜技术。
①基于化学吸附的SA技术
其基本方法是:将表面修饰有某种物质的基片浸入待组装分子的溶液中,待组装分子一端的反应基于基片表面发生自动连续的化学反应,在基片表面形成化学键连接的二维有序单层膜;如果单层膜表面也有具有某种反应活性的基团,则又可以和别的物质反应,如此重复就构建成同质或异质的多成膜。SA技术形成的多层膜有如下主要特征:①. 原位自发形成;②. 热力学性质稳定;③.物理基片形状如何,其表面均可形成均匀一致的覆盖层;④.高密度堆积和低缺氧浓度;⑤. 分子有序排列;⑥.可人为设计分子结构和表面结构来获得预期的物理和化学性质;⑦. 有机合成和制膜有很大的灵活性。
②基于物理吸附的SA膜技术
基于物理吸附的SA膜技术又叫做离子自组装技术,其原理是将表面带负电荷的基片浸入阳离子聚电解质溶液中,由于静电吸引,阳离子聚电解质聚集到基片表面,使基片表面带正电,然后将基片再浸入阴离子聚电解质溶液中,如此重复进行,就会形成多层聚电解质自组装膜。
这种建立在静电互相作用原理基础上的自组装技术,是一种新型的制备聚合物纳
5
米复合膜的方法。它的特点是:①对沉积过程或膜结构进行分子级控制;②.利用连续沉积的方法,可实现层间分子对称或非对称二维或三维超晶格结构,从而实现膜的光、电、磁、非线性光学性能的功能化;③.可形成仿真生物膜;④.层与层之间膜的稳定性极好;⑤.与基于化学吸附法制备有机复合膜相比,具有较好的重复性。
四.纳米薄膜特性
1.纳米薄膜的力学性能:纳米薄膜的性能强烈依赖于晶粒(颗粒)尺寸、膜的厚
度、表面粗糙度及多层膜的结构,这也就是日前纳米薄膜研究的主要内容。
硬度:纳米多层膜的硬度与材料系统的组分、各组分的相对含量、薄膜的调制波长有着密切的关系。
机械性能较好的薄膜材料一般由硬质相〔如陶瓷材料)和韧性相(如全属材料)共同构成。因此如果不考虑纳米效应的影响和硬质相含量较高时,则薄膜材料的硬度较高,并且与相同材料组成的近似混合的薄膜相比,硬度均有所提高。
韧性:多层膜结构可以提高材料的韧性,其增韧机制主要是裂纹尖端钝化、裂纹分支、层片拔出以及沿界面的界面开裂等,在纳米多层膜中也存在类似的增韧机制。
影响韧性的因素主要有组分材料的相对含量及调制波长。在金属/陶瓷组成的多层膜中,可以把金属作为韧性相,陶瓷为脆性相,实验中发现在TiC/Fe、Ti/Al、TiC/W多层膜系中,当金属含量较低时,韧性基本上随金属相含量的增加而上升,但是在上升到一定程度时反而下降。
耐磨性:研究发现合理搭配材料可以获得较好的耐磨性。从结构上看,多层膜的晶粒小,原子排列的晶格存在缺陷的可能性增多,晶粒内的晶格点阵畸变和晶格缺陷的增多,使晶粒内部的位错滑移阻碍增加;此外,多层膜相界面结构也非常复杂,由于不同材料位错能的差异,也会导致薄膜材料的耐磨性的不同。
2.光学性能
(1)蓝移和宽化
用胶体化学法制备TiO2/SnO2超颗粒及其复合LB膜具有特殊的紫外-可见光吸收光谱。TiO2/SnO2超颗粒具有量子尺寸效应使吸收光谱蓝移。TiO2/SnO2-硬脂酸复合LB膜具有良好的抗紫外线性能和光学透过性。
(2)光学线性与非线性
光学线性效应是指介质在光波场作用下,当光强较弱时,介质的电极化强度与光波电场的一次方成正比的现象。一般说来,多层膜的每层膜厚度与激子玻尔半径(aB)相近
6
或小于aB时,在光的照射下,吸收谱上会出现激子吸收峰,这种现象也属于光学效应。半导体InCaAlAs和InCaAs构成的多层膜,通过控制InCaAs膜的厚度,可以很容易地观察到激子吸收峰。
光学非线性是在强光场的作用下,介质的电极化强度中就会出现与外加电磁场的二次、三次乃至高次方成比例的项。对于纳米材料,小尺寸效应、宏观量子尺寸效应、量子限域和激子是引起光学非线性的主要原因。
3.电磁学特性
(1)磁学特性
磁性材料在吸波材料中最具特色和发展潜力,高磁导率金属材料一般具有高电导率,高频下易产生大涡流,对电磁波强反射而难以被吸收。采用薄膜多层化设计,用绝缘介质层将高磁导率金属层间隔形成纳米多层膜复合结构,可能获得高频下的高磁导率和大磁损耗。某文献研究报道了C0923zr7Ndn,薄膜材料的高频磁谱特性,该材料具有高的磁损耗,有可能成为GHz频段抗EMI材料,难以应用于高于2 GHz频段。华中科技大学邓联文吲等人研究一种能用于微波吸收的高磁损耗型纳米多层膜材料,并获得了高于2GHz频段的高磁导率。
(2)电学特性
有人在Au/Al2O3de 颗粒膜上观察到电阻反常现象,随着纳米金颗粒含量的增加,电阻不但不减小,反而急剧增加。实验证明,材料的导电性与材料颗粒的临界尺寸有关。当材料颗粒小于临界尺寸时,它可能失去原来的电学性。
(3)气敏特性
采用PECVD方法制备的SnO2超微粒颗粒薄膜比表面积大,存在不饱和配位键,表面存在很多活性中心,容易吸附多种气体而在表面进行反应,是很好的制备传感器的功能膜材料。
7
五.应用及前景
1.应用(1)金属的耐蚀薄膜:非晶态合金膜是一种无晶界的,高度均匀的单相体
系,且不存在一般金属或合金所具有的晶体缺陷,因此,它不存在晶体间腐蚀和化学偏析,具有极强的防腐蚀性能。
如化学沉积制备非晶态的Ni-P合金。由于它没有晶态Ni-P合金所具有的两相组织,无法构成微电池。其镀层可使金属材料原来敏感的点蚀、晶间腐蚀、应力腐蚀和氢脆等易腐蚀性都得到改善。
(2)多功能薄膜—SnO2由于:SnO2具有良好的吸附性、较低的电阻温度系数及化学稳定性,因此容易沉积在诸如玻璃、陶瓷材料、氧化物材料及其他种类的衬底材料上。SnO2薄膜的主要用途有:薄膜电阻器、透明电极、气敏传感器、太阳能电池、热反射镜、光电子器件、电热转化等。
2.前景
纳米薄膜在很多领域内都有着广阔而先进的应用前景,利用它独有的物理化学性质及特性,设计出新型纳米结构性器件和纳米复合传统材料改性正孕育着新的突破,而功能性的薄膜材料一直是目前研究的热点。
利用纳米薄膜吸收光谱的蓝移和红移特性,人们已经制造出了各种各样的紫外吸收薄膜和红外反射薄膜,并且在日常的生产和生活中获得了广泛的应用;在一些硬度高的耐磨涂层或薄膜中添入纳米相,可进一步提高纳米薄膜的硬度和耐磨性能,并保持较高的韧性;利用纳米粒子涂料形成的涂层具有良好的吸收能力,可对重型设备起到隐身作用,纳米氧化钛、氧化铬、氧化铁等具有导体性质的粒子,有很好的静电屏蔽作用;美国科学家将PAH、PSS沉积到多空聚丙烯膜上,二氧化碳和氮气的选择透过性表明固体二甲基硅烷沉积多层膜后有较高的选择性。
在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的要求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越。新材料的创新,以及在此基础上诱发的新技术是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。正想美国科学家估计的“这种人们肉眼看不见的极微小的物质很有可能给各个领域带来一场革命”。在纳米科技的竞争中,我国起步并不算晚,这是我国赶上世界经济发展的又一个不可多得的机遇。
8
参考文献
[1] 崔传文 姜明 纳米薄膜材料的制备技术及其应用研究 [2] 徐扬海 纳米薄膜材料
[3] 王鹏飞 周剑平 巫建功 王永明 ZnO基稀磁半导体纳米薄膜材料的研究进展 [4] 贾嘉 溅射法制备纳米薄膜材料及进展
9
相关推荐: