22(x?1)?y?8µÄÔ²ÐÄ£¬µãA£¨1£¬0£©17. ÒÑÖªµãCΪԲ£¬PÊÇÔ²Éϵ͝µã£¬µãQÔÚÔ²µÄ
°ë¾¶CPÉÏ£¬ÇÒMQ?AP?0,AP?2AM.
£¨¢ñ£©µ±µãPÔÚÔ²ÉÏÔ˶¯Ê±£¬ÇóµãQµÄ¹ì¼£·½³Ì£»
2y?kx?k?1Ó루¢ñ£©ÖÐËùÇóµãQ £¨¢ò£©ÈôÖ±Ïß
µÄ¹ì¼£½»ÓÚ²»Í¬Á½µãF£¬H£¬OÊÇ×ø±êԵ㣬
23?OF?OH?4£¬Çó¡÷FOHµÄÃæ»ýµÄȡֵ·¶Î§¡£ ÇÒ318. ÈçͼËùʾ£¬OÊÇÏß¶ÎABµÄÖе㣬|AB|£½2c£¬ÒÔµãAΪԲÐÄ£¬2aΪ°ë¾¶×÷Ò»Ô²£¬ÆäÖÐa?c¡£
£¨1£©ÈôÔ²AÍâµÄ¶¯µãPµ½BµÄ¾àÀëµÈÓÚËüµ½Ô²ÖܵÄ×î¶Ì¾àÀ룬½¨Á¢Êʵ±×ø±êϵ£¬Ç󶯵ãP
A O B µÄ¹ì¼£·½³Ì£¬²¢ËµÃ÷¹ì¼£ÊǺÎÖÖÇúÏߣ»£¨2£©¾¹ýµãOµÄÖ±ÏßlÓëÖ±ÏßAB³É60¡ã½Ç£¬µ±c£½2£¬a£½1ʱ£¬¶¯µãPµÄ¹ì¼£¼ÇΪE£¬Éè¹ýµãBµÄÖ±Ïßm½»ÇúÏßEÓÚM¡¢NÁ½µã£¬ÇÒµãMÔÚÖ±ÏßABµÄÉÏ·½£¬ÇóµãMµ½Ö±ÏßlµÄ¾àÀëdµÄȡֵ·¶Î§¡£
22x?y?2x?6y?1?0ÉÏÓÐÁ½µãP¡¢QÂú×ã¹ØÓÚÖ±Ïß19. ÉèOÎª×ø±êÔµã,ÇúÏß
x?my?4?0¶Ô³Æ£¬ÓÖÒÔPQΪֱ¾¶µÄÔ²¹ýOµã.
£¨1£©ÇómµÄÖµ; £¨2£©ÇóÖ±ÏßPQµÄ·½³Ì.
rrrra?b?420. ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Èôa?(x?3,y),b?(x?3,y)£¬ÇÒ£¬
£¨1£©Ç󶯵ãQ(x,y)µÄ¹ì¼£CµÄ·½³Ì£»
£¨2£©ÒÑÖª¶¨µãP(t,0)(t?0)£¬ÈôбÂÊΪ1µÄÖ±Ïßl¹ýµãP²¢Óë¹ì¼£C½»ÓÚ²»Í¬µÄÁ½µãA,B£¬
uuuuruuuruuur??[0,2?]ÇÒ¶ÔÓڹ켣CÉÏÈÎÒâÒ»µãM£¬¶¼´æÔÚ£¬Ê¹µÃOM?cos??OA?sin??OB³ÉÁ¢£¬
ÊÔÇó³öÂú×ãÌõ¼þµÄʵÊýtµÄÖµ¡£
21. ÒÑ֪˫ÇúÏß
x2y2?2?12ab£¨a>0,b>0£©µÄÓÒ×¼Ïßl2ÓëÒ»Ìõ½¥½üÏßl½»ÓÚÁ½µãP¡¢Q£¬F
ÊÇË«ÇúÏßµÄÓÒ½¹µã¡£ £¨I£©ÇóÖ¤£ºPF¡Íl£»
£¨II£©Èô¡÷PQFΪµÈ±ßÈý½ÇÐΣ¬ÇÒÖ±Ïßy=x+b½»Ë«ÇúÏßÓÚA£¬BÁ½µã£¬ÇÒÇúÏߵķ½³Ì£»
£¨III£©ÑÓ³¤FP½»Ë«ÇúÏß×ó×¼Ïßl1ºÍ×óÖ§·Ö±ðΪµãM¡¢N£¬ÈôMΪPNµÄÖе㣬ÇóË«ÇúÏßµÄÀëÐÄÂÊe¡£
AB?30£¬ÇóË«
22. ÒÑÖªÓÖÇúÏß ÔÚ×óÓÒ¶¥µã·Ö±ðÊÇA£¬B£¬µãPÊÇÆäÓÒ×¼ÏßÉϵÄÒ»µã£¬Èô
µãA¹ØÓÚµãPµÄ¶Ô³ÆµãÊÇM£¬µãP¹ØÓÚµãBµÄ¶Ô³ÆµãÊÇN£¬ÇÒM¡¢N¶¼ÔÚ´ËË«ÇúÏßÉÏ¡£
£¨I£©Çó´ËË«ÇúÏߵķ½³Ì£» £¨II£©ÇóÖ±ÏßMNµÄÇãб½Ç¡£
???AP¡¢OP¡¢BP23. Èçͼ£¬ÔÚÖ±½Ç×ø±êϵÖУ¬µãA£¨-1£¬0£©£¬B£¨1£¬0£©£¬P£¨x£¬y£©£¨y?0£©¡£Éè
ÓëxÖáÕý·½ÏòµÄ¼Ð½Ç·Ö±ðΪ¦Á¡¢¦Â¡¢¦Ã£¬Èô???????¡£ £¨I£©ÇóµãPµÄ¹ì¼£GµÄ·½³Ì£»
£¨II£©Éè¹ýµãC£¨0£¬-1£©µÄÖ±ÏßlÓë¹ì¼£G½»ÓÚ²»Í¬Á½µãM¡¢N¡£ÎÊÔÚxÖáÉÏÊÇ·ñ´æÔÚÒ»µã
E?x0£¬0?£¬Ê¹¡÷MNEΪÕýÈý½ÇÐΡ£Èô´æÔÚÇó³öx0Öµ£»Èô²»´æÔÚ˵Ã÷ÀíÓÉ¡£
x2y2C:2?2?1?a?b?0?Mab24. ÉèÍÖÔ²¹ýµã
?2,1?£¬ÇÒ½¹µãΪF??12,0?¡£
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£» £¨2£©µ±¹ýµãÂú×ã
P?4,1?µÄ¶¯Ö±ÏßlÓëÍÖÔ²CÏཻÓëÁ½²»Í¬µãA¡¢Bʱ£¬ÔÚÏß¶ÎABÉÏÈ¡µãQ£¬
£¬Ö¤Ã÷£ºµãQ×ÜÔÚij¶¨Ö±ÏßÉÏ¡£
uuuruuuruuuruuurAPgQB?AQgPB25. Æ½ÃæÖ±½Ç×ø±êϵÖУ¬OÎª×ø±êԵ㣬¸ø¶¨Á½µãA£¨1£¬0£©¡¢B£¨0£¬£2£©£¬µãCÂú×ã
OC??OA??OB,ÆäÖÐ?¡¢??R,ÇÒ??2??1
£¨1£©ÇóµãCµÄ¹ì¼£·½³Ì£»
x2y2?2?1(a?0,b?0)2ab£¨2£©ÉèµãCµÄ¹ì¼£ÓëË«ÇúÏß½»ÓÚÁ½µãM¡¢N£¬ÇÒÒÔMNΪֱ¾¶11?Ϊ¶¨Öµ22abµÄÔ²¹ýԵ㣬ÇóÖ¤£º.
26. ÉèF(1,0)£¬M¡¢P·Ö±ðΪxÖá¡¢yÖáÉϵĵ㣬ÇÒPM?PF?0£¬¶¯µãNÂú×㣺
MN??2NP.
£¨1£©Ç󶯵ãNµÄ¹ì¼£EµÄ·½³Ì£»
£¨2£©¹ý¶¨µãC(?c,0)(c?0)ÈÎÒâ×÷Ò»ÌõÖ±ÏßlÓëÇúÏßE½»Ó벻ͬµÄÁ½µãA¡¢B£¬ÎÊÔÚxÖáÉÏÊÇ·ñ´æÔÚÒ»¶¨µãQ£¬Ê¹µÃÖ±ÏßAQ¡¢BQµÄÇãб½Ç»¥²¹£¿Èô´æÔÚ£¬Çó³öQµãµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ.
3127. Èçͼ£¬Ö±½ÇÌÝÐÎABCDÖУ¬¡ÏDAB?90?£¬AD¡ÎBC£¬AB=2£¬AD=2£¬BC=2
ÍÖÔ²FÒÔA¡¢BΪ½¹µã£¬ÇÒ¾¹ýµãD£¬
£¨¢ñ£©½¨Á¢Êʵ±µÄÖ±½Ç×ø±êϵ£¬ÇóÍÖÔ²FµÄ·½³Ì£»
£¨¢ò£©ÊÇ·ñ´æÔÚÖ±ÏßlÓëÍÖÔ²F½»ÓÚM¡¢NÁ½µã£¬ÇÒÏß¶ÎMNµÄÖеãΪµãC£¬Èô´æÔÚ£¬ÇóÖ±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ.
28. ÈçͼËùʾ£¬B£¨¨C c£¬0£©£¬C£¨c£¬0£©£¬AH¡ÍBC£¬´¹×ãΪH£¬ÇÒBH?3HC£® £¨1£©ÈôAB?AC= 0£¬ÇóÒÔB¡¢CΪ½¹µã²¢ÇÒ¾¹ýµãAµÄÍÖÔ²µÄÀëÐÄÂÊ£» £¨2£©D·ÖÓÐÏòÏß¶ÎABµÄ±ÈΪ?£¬A¡¢DͬÔÚÒÔB¡¢CΪ½¹µãµÄÍÖÔ²ÉÏ£¬
D
A
C B 7µ± ¨D5¡Ü?¡Ü2 ʱ£¬ÇóÍÖÔ²µÄÀëÐÄÂÊeµÄȡֵ·¶Î§£®
?29. ÔÚÖ±½Ç×ø±êÆ½ÃæÖУ¬?ABCµÄÁ½¸ö¶¥µãA,BµÄ×ø±ê·Ö±ðΪA(?1,0)£¬B(1,0)£¬Æ½ÃæÄÚÁ½µãG,MͬʱÂú×ãÏÂÁÐÌõ¼þ£º ¢ÙGA?GB?GC?0£»¢ÚMA?MB?MC£»¢ÛGM¡ÎAB
£¨1£©Çó?ABCµÄ¶¥µãCµÄ¹ì¼£·½³Ì£»
£¨2£©¹ýµãP(3,0)µÄÖ±ÏßlÓ루1£©Öй켣½»ÓÚE,FÁ½µã£¬ÇóPE?PFµÄȡֵ·¶Î§ ´ð°¸£º
1.½â£º(¢ñ) ÒÔAµãÎª×ø±êԵ㣬l1ΪxÖᣬ½¨Á¢ÈçͼËùʾµÄ×ø±êϵ£¬ÔòD(1£¬0)£¬B(4£¬0)£¬ÉèM£¨x£¬y£©£¬ ÔòN£¨x£¬0£©. ¡ß|BN|=2|DM|£¬ ¡à|4£x|=2(x£1)2+y2 , ÕûÀíµÃ3x2+4y2=12, ¡à¶¯µãMµÄ¹ì¼£
x2y2
·½³ÌΪ+ =1 .
43
uuuruuur(¢ò)¡ßAG??AD(??R),
uuuruuuruuurGE?GF?2GH,¡àHµãΪÏß¶ÎEFµÄÖе㣻¡àA¡¢D¡¢GÈýµã¹²Ïߣ¬¼´µãGÔÚxÖáÉÏ£»ÓÖ¡ß
uuuruuurÓÖ¡ßGH?EF?0,¡àµãGÊÇÏß¶ÎEFµÄ´¹Ö±Æ½·ÖÏßGHÓëxÖáµÄ½»µã¡£
Éèl£ºy=k(x£1)(k¡Ù0)£¬´úÈë3x2+4y2=12µÃ
(3+4k2)x2£8k2x+4k2£12=0£¬ÓÉÓÚl¹ýµãD(1£¬0)ÊÇÍÖÔ²µÄ½¹µã£¬ ¡àlÓëÍÖÔ²±ØÓÐÁ½¸ö½»µã£¬
ÉèE(x1£¬y1)£¬F(x2£¬y2)£¬EFµÄÖеãHµÄ×ø±êΪ£¨x0£¬y0£©£¬
8k24k2£12
¡àx1+x2= £¬x1x2= £¬
3+4k23+4k2x1+x24k2£3k
x0= = £¬y0=k(x0£1)= £¬
23+4k23+4k2¡àÏß¶ÎEFµÄ´¹Ö±Æ½·ÖÏßΪ
1
y£ y0 =£ (x£x0)£¬Áîy=0µÃ£¬
kµãGµÄºá×ø±êxG = ky0+x0 = 13= £ £¬ 44(3+4k2)
£3k24k2k2
+ = 3+4k23+4k23+4k2
1113
¡ßk¡Ù0£¬¡àk2>0£¬¡à3+4k2>3£¬0< < £¬¡à£ <£ <0£¬
(3+4k2)344(3+4k2)13
¡àxG= £
44(3+4k2)
1(0£¬ £©
4
1
¡àµãGµÄºá×ø±êµÄȡֵ·¶Î§Îª(0£¬ £©.
4
33e?c?a222.½â£º¡ß£¬¡à
ÓÉa2?b2?c2µÃ a?2b
x2y2?2?12b ¡àÉèÍÖÔ²µÄ·½³ÌΪ4b£¨b?0£©
222x?4b?4y¼´£¨?b?y?b£©
ÉèM(x,y)ÊÇÍÖÔ²ÉÏÈÎÒâÒ»µã£¬Ôò
|PM|2?x2?(y?3)2??3(y?1)2?4b2?12 £¨?b?y?b£©
22|PM|?4b?12 y??1b?1?b??1?bmaxÈô¼´£¬Ôòµ±Ê±£¬
ÓÉÒÑÖªÓÐ4b?12?16£¬µÃb?1£»
222|PM|?b?6b?9 y??bmaxÈô0?b?1¼´?1??b£¬Ôòµ±Ê±£¬
ÓÉÒÑÖªÓÐb?6b?9?16£¬µÃb?7£¨ÉáÈ¥£©. ×ÛÉÏËùÊö£¬b?1£¬a?2.
2x2?y2?1ËùÒÔ£¬ÍÖÔ²µÄ·½³ÌΪ4.
?a225??4?c?a?5?b3?½âÖ®µÃ:?b?3???a5?c?4222??c?a?b?3.½â£º£¨I£©ÓÉÒÑÖª?
x2y2x2y2??1??199¡àÍÖÔ²µÄ·½³ÌΪ25£¬Ë«ÇúÏߵķ½³Ì25.
Ïà¹ØÍÆ¼ö£º