(1)求证:△ABM≌△CDN;
(2)点G是对角线AC上的点,∠EGF=90°,求AG的长.
22.(2019?宁夏)如图,已知矩形ABCD中,点E,F分别是AD,AB上的点,EF⊥EC,且AE=CD.
(1)求证:AF=DE; (2)若DE
AD,求tan∠AFE.
23.(2019?哈尔滨)已知:在矩形ABCD中,BD是对角线,AE⊥BD于点E,CF⊥BD于点F.
(1)如图1,求证:AE=CF;
(2)如图2,当∠ADB=30°时,连接AF、CE,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD面积的.
24.(2019?贺州)如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE=CF. (1)求证:△ABE≌△CDF;
(2)当AC⊥EF时,四边形AECF是菱形吗?请说明理由.
25.(2019?福建)如图,点E、F分别是矩形ABCD的边AB、CD上的一点,且DF=BE.求证:AF=CE.
26.(2019?鄂州)如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB、CD边于点E、F. (1)求证:四边形DEBF是平行四边形; (2)当DE=DF时,求EF的长.
27.(2019?绍兴)有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.
(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.
(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.
28.(2019?舟山)如图,在矩形ABCD中,点E,F在对角线BD.请添加一个条件,使得结论“AE=CF”成立,并加以证明.
29.(2019?宿迁)如图,矩形ABCD中,AB=4,BC=2,点E、F分别在AB、CD上,且BE=DF
.
(1)求证:四边形AECF是菱形; (2)求线段EF的长.
30.(2019?宁波)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上. (1)求证:BG=DE;
(2)若E为AD中点,FH=2,求菱形ABCD的周长.
31.(2019?怀化)已知:如图,在?ABCD中,AE⊥BC,CF⊥AD,E,F分别为垂足. (1)求证:△ABE≌△CDF; (2)求证:四边形AECF是矩形.
32.(2019?江西)(1)计算:﹣(﹣1)+|﹣2|+(
2)0;
(2)如图,四边形ABCD中,AB=CD,AD=BC,对角线AC,BD相交于点O,且OA=OD.求证:四边形ABCD是矩形.
33.(2019?连云港)如图,在△ABC中,AB=AC.将△ABC沿着BC方向平移得到△DEF,其中点E在边BC上,DE与AC相交于点O. (1)求证:△OEC为等腰三角形;
(2)连接AE、DC、AD,当点E在什么位置时,四边形AECD为矩形,并说明理由.
34.(2019?青岛)如图,在?ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG. (1)求证:△ABE≌△CDF;
(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.
35.(2019?云南)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=
OD,且∠AOB=2∠OAD. (1)求证:四边形ABCD是矩形;
(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.
36.(2019?新疆)如图,在菱形ABCD中,对角线AC,BD相交于点O,E是CD中点,连接OE.过点C作CF∥BD交OE的延长线于点F,连接DF. 求证:(1)△ODE≌△FCE; (2)四边形OCFD是矩形.
相关推荐: