第一范文网 - 专业文章范例文档资料分享平台

新人教版九年级上册数学全册教案

来源:用户分享 时间:2025/5/20 21:43:13 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

《人教版九年级上册全书教案》

第二十一章 二次根式

教材内容

1.本单元教学的主要内容:

二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式. 2.本单元在教材中的地位和作用:

二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础. 教学目标

1.知识与技能

(1)理解二次根式的概念.

(2)理解a(a≥0)是一个非负数,(a)2=a(a≥0),a2=a(a≥0). (3)掌握a·b=ab(a≥0,b≥0),ab=a·b;

aaaa=(a≥0,b>0),=(a≥0,b>0).

bbbb (4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.

2.过程与方法

(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.?再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.

(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,?并运用规定进行计算.

(3)利用逆向思维,?得出二次根式的乘(除)法规定的逆向等式并运用它进行化简. (4)通过分析前面的计算和化简结果,抓住它们的共同特点,?给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.

3.情感、态度与价值观

通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力. 教学重点

1.二次根式a(a≥0)的内涵.a(a≥0)是一个非负数;(a)2=a(a≥0);

a2=a(a≥0)?及其运用.

2.二次根式乘除法的规定及其运用. 3.最简二次根式的概念. 4.二次根式的加减运算. 教学难点

1.对a(a≥0)是一个非负数的理解;对等式(a)2=a(a≥0)及a2=a(a≥0)

的理解及应用.

2.二次根式的乘法、除法的条件限制.

3.利用最简二次根式的概念把一个二次根式化成最简二次根式. 教学关键

1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点. 2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,?培养学生一丝不苟的科学精神.

单元课时划分

本单元教学时间约需11课时,具体分配如下: 21.1 二次根式 3课时 21.2 二次根式的乘法 3课时 21.3 二次根式的加减 3课时 教学活动、习题课、小结 2课时

21.1 二次根式

第一课时

教学内容

二次根式的概念及其运用 教学目标

理解二次根式的概念,并利用a(a≥0)的意义解答具体题目. 提出问题,根据问题给出概念,应用概念解决实际问题. 教学重难点关键

1.重点:形如a(a≥0)的式子叫做二次根式的概念; 2.难点与关键:利用“a(a≥0)”解决具体问题. 教学过程

一、复习引入

(学生活动)请同学们独立完成下列三个问题: 问题1:已知反比例函数y=

3,那么它的图象在第一象限横、?纵坐标相等的点的坐标x是___________.

问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.

ABC

问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方

差是S2,那么S=_________. 老师点评:

问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x=3,所以所求点的坐标(3,3). 问题2:由勾股定理得AB=10 问题3:由方差的概念得S= 二、探索新知 很明显3、10、4. 64,都是一些正数的算术平方根.像这样一些正数的算术平方根6的式子,我们就把它称二次根式.因此,一般地,我们把形如a(a≥0)?的式子叫做二次根式,“”称为二次根号.

(学生活动)议一议: 1.-1有算术平方根吗? 2.0的算术平方根是多少? 3.当a<0,a有意义吗? 老师点评:(略)

例1.下列式子,哪些是二次根式,哪些不是二次根式:2、33、

1、x(x>0)、x0、42、-2、

1、x?y(x≥0,y?≥0). x?y”;第二,被开方数是正数

分析:二次根式应满足两个条件:第一,有二次根号“或0.

解:二次根式有:2、x(x>0)、0、-2、x?y(x≥0,y≥0);不是二次根式的有:33、114、2、.

x?yx 例2.当x是多少时,3x?1在实数范围内有意义?

分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,?3x?1才能有意义.

解:由3x-1≥0,得:x≥ 当x≥

1 31时,3x?1在实数范围内有意义. 3 三、巩固练习

教材P练习1、2、3. 四、应用拓展

例3.当x是多少时,2x?3+ 分析:要使2x?3+

1在实数范围内有意义? x?11在实数范围内有意义,必须同时满足2x?3中的≥0和x?11中的x+1≠0. x?1 解:依题意,得? 由①得:x≥-

?2x?3?0

?x?1?03 2 由②得:x≠-1 当x≥-

31且x≠-1时,2x?3+在实数范围内有意义. 2x?1x的值.(答案:2) y 例4(1)已知y=2?x+x?2+5,求

(2)若a?1+b?1=0,求a2004+b2004的值.(答案:

五、归纳小结(学生活动,老师点评) 本节课要掌握:

1.形如a(a≥0)的式子叫做二次根式,“2) 5”称为二次根号.

2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数. 六、布置作业

1.教材P8复习巩固1、综合应用5.

2.选用课时作业设计. 3.课后作业:《同步训练》

第一课时作业设计 一、选择题

1.下列式子中,是二次根式的是( )

A.-7 B.37 C.x D.x 2.下列式子中,不是二次根式的是( ) A.4 B.16 C.8 D.

1 x

3.已知一个正方形的面积是5,那么它的边长是( ) A.5 B.5 C.

1 D.以上皆不对 5 二、填空题

1.形如________的式子叫做二次根式. 2.面积为a的正方形的边长为________. 3.负数________平方根. 三、综合提高题

1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,?底面应做成正方形,试问底面边长应是多少? 2.当x是多少时,

2x?32

+x在实数范围内有意义? x 3.若3?x+x?3有意义,则x?2=_______. 4.使式子?(x?5)2有意义的未知数x有( )个. A.0 B.1 C.2 D.无数

5.已知a、b为实数,且a?5+210?2a=b+4,求a、b的值.

第一课时作业设计答案: 一、1.A 2.D 3.B

二、1.a(a≥0) 2.a 3.没有

三、1.设底面边长为x,则0.2x2=1,解答:x=5.

3??2x?3?0?x?? 2.依题意得:?,?2

?x?0??x?0∴当x>-

2x?33且x≠0时,+x2在实数范围内没有意义.

x23.

1 3 4.B

5.a=5,b=-4

21.1 二次根式(2)

第二课时

教学内容

搜索更多关于: 新人教版九年级上册数学全册教案 的文档
新人教版九年级上册数学全册教案.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c25wlv2m5vy4mg6283nif6msol1o4w700uyo_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top