第一范文网 - 专业文章范例文档资料分享平台

(word完整版)苏教版八年级数学全册知识点总结,推荐文档

来源:用户分享 时间:2025/5/28 13:27:01 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

八年级数学全册知识点总结 上册 第一章 轴对称图形

轴对称图形 线段 角 等腰三角形 轴对称的性质 轴对称的应用 轴对称 等腰梯形 设计轴对称图案1. 什么叫轴对称:

如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。

2. 什么叫轴对称图形:

如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

3.轴对称与轴对称图形的区别与联系: 区别:

①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿某直线对折能完全重合。

②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性。 联系:

①两部分都完全重合,都有对称轴,都有对称点。

②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对称。

常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰三角形、等边三角形、角、线段、相交的两条直线等。 4.线段的垂直平分线: l 垂直并且平分一条线段的直线,叫做这条线段的垂直平分线。 (也称线段的中垂线) 5.轴对称的性质:

A B ⑴成轴对称的两个图形全等。

⑵如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。 6.怎样画轴对称图形:

画轴对称图形时,应先确定对称轴,再找出对称点。

1

------线段、角的轴对称性

1.线段的轴对称性:

① 线段是轴对称图形,对称轴有两条;一条是线段所在的直线, 另一条是这条线段的垂直平分线。

②线段的垂直平分线上的点到线段两端的距离相等。 ③到线段两端距离相等的点,在这条线段的垂直平分线上。 结论:线段的垂直平分线是到线段两端距离相等的点的集合 2.角的轴对称性:

①角是轴对称图形,对称轴是角平分线所在的直线。 ②角平分线上的点到角的两边距离相等。

③到角的两边距离相等的点,在这个角的平分线上。

结论:角的平分线是到角的两边距离相等的点的集合 O--------等腰三角形的轴对称性

1.等腰三角形的性质:

①等腰三角形是轴对称图形,顶角平分线所在直线是它的对称轴;

②等腰三角形的两个底角相等;(简称“等边对等角”)

EDPAl M A B CB③等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(简称“三线合一”) 2.等腰三角形的判定:

①如果一个三角形有2个角相等,那么这2个角所对的边也相等;(简称“等角对等边”) ②直角三角形斜边上的中线等于斜边上的一半。 3.等边三角形:

① 等边三角形的定义:

三边相等的三角形叫做等边三角形或正三角形。 ② 等边三角形的性质:

等边三角形是轴对称图形,并且有3条对称轴;

0

等边三角形的每个角都等于60。 ③等边三角形的判定:

3个角相等的三角形是等边三角形; 有两个角等于60的三角形是等边三角形; 有一个角等于60的等腰三角形是等边三角形。 4.三角形的分类:

斜三角形:三边都不相等的三角形。 三角形 只有两边相等的三角形。 等腰三角形

等边三角形

----------等腰梯形的轴对称性

1.等腰梯形的定义:

①梯形的定义:一组对边平行,另一组对边不平行为梯形。

梯形中,平行的一组对边称为底,不平行的一组对边称为腰。 ③ 等腰梯形的定义:两腰相等的梯形叫做等腰梯形。 2.等腰梯形的性质:

①等腰梯形是轴对称图形,是两底中点的连线所在的直线。

2

00

A D B C

②等腰梯形同一底上两底角相等。 ③等腰梯形的对角线相等。 3.等腰梯形的判定:

④ 在同一底上的2个底角相等的梯形是等腰梯形。 ⑤ 补充:对角线相等的梯形是等腰梯形。

第二章 勾股定理与平方根

一.勾股定理

1、勾股定理

直角三角形两直角边a,b的平方和等于斜边c的平方,即a?b?c 2、勾股定理的逆定理

如果三角形的三边长a,b,c有关系a?b?c,那么这个三角形是直角三角形。 3、勾股数:满足a?b?c的三个正整数,称为勾股数。

222222222二、实数的概念及分类

1、实数的分类 正有理数

有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数

无理数 无限不循环小数 负无理数

2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如7,32等;

(2)有特定意义的数,如圆周率π,或化简后含有π的数,如(3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o等

π+8等; 3三、平方根、算数平方根和立方根

1、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是0。

表示方法:记作“a”,读作根号a。

性质:正数和零的算术平方根都只有一个,零的算术平方根是零。

2、平方根:一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。

表示方法:正数a的平方根记做“?

a”,读作“正、负根号a”。

3

性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。 开平方:求一个数a的平方根的运算,叫做开平方。 注意a的双重非负性:

a?0

3、立方根

一般地,如果一个数x的立方等于a,即x3=a那么这个数x就叫做a 的立方根(或三次方根)。 表示方法:记作3a

性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。 注意:3?a??3a,这说明三次根号内的负号可以移到根号外面。

a?0

四、实数大小的比较

1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。

2、实数大小比较的几种常用方法

(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。 (2)求差比较:设a、b是实数,

a?b?0?a?b, a?b?0?a?b,

a?b?0?a?b

(3)求商比较法:设a、b是两正实数,

aaa?1?a?b;?1?a?b;?1?a?b; bbb(4)绝对值比较法:设a、b是两负实数,则a?b?a?b。 (5)平方法:设a、b是两负实数,则a?b?a?b。

22五、实数的运算

(1)六种运算:加、减、乘、除、乘方 、开方

(2)实数的运算顺序

先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。 (3)运算律

加法交换律 a?b?b?a

加法结合律 (a?b)?c?a?(b?c) 乘法交换律 ab?ba 乘法结合律 (ab)c?a(bc) 乘法对加法的分配律 a(b?c)?ab?ac

4

(word完整版)苏教版八年级数学全册知识点总结,推荐文档.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c264wm14qxy9kfa2517te4mn0g1mmp000jqz_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top