第一范文网 - 专业文章范例文档资料分享平台

matlab30个案例分析案例4代码

来源:用户分享 时间:2025/8/16 9:31:38 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

%% 清空环境变量 clc clear tic

%% 训练数据预测数据提取及归一化 %下载输入输出数据 load data input output

%从1到2000间随机排序 k=rand(1,4000); [m,n]=sort(k);

%找出训练数据和预测数据 input_train=input(n(1:3900),:)'; output_train=output(n(1:3900),:)'; input_test=input(n(3901:4000),:)'; output_test=output(n(3901:4000),:)';

%选连样本输入输出数据归一化

[inputn,inputps]=mapminmax(input_train); [outputn,outputps]=mapminmax(output_train);

%% BP网络训练 % %初始化网络结构

net=newff(inputn,outputn,5);

net.trainParam.epochs=100; net.trainParam.lr=0.1;

net.trainParam.goal=0.0000004;

%网络训练

net=train(net,inputn,outputn);

%% BP网络预测 %预测数据归一化

inputn_test=mapminmax('apply',input_test,inputps);

%网络预测输出

an=sim(net,inputn_test);

%网络输出反归一化

BPoutput=mapminmax('reverse',an,outputps);

%% 结果分析

figure(1)

plot(BPoutput,':og') hold on

plot(output_test,'-*');

legend('预测输出','期望输出','fontsize',12) title('BP网络预测输出','fontsize',12) xlabel('样本','fontsize',12) ylabel('输出','fontsize',12) print -dtiff -r600 4-3 %预测误差

error=BPoutput-output_test;

figure(2)

plot(error,'-*')

title('神经网络预测误差')

figure(3)

plot((output_test-BPoutput)./BPoutput,'-*');

title('神经网络预测误差百分比')

errorsum=sum(abs(error)) toc

save data net inputps outputps

function ret=Code(lenchrom,bound)

%本函数将变量编码成染色体,用于随机初始化一个种群 % lenchrom input : 染色体长度

% bound input : 变量的取值范围 % ret output: 染色体的编码值 flag=0;

while flag==0

pick=rand(1,length(lenchrom));

ret=bound(:,1)'+(bound(:,2)-bound(:,1))'.*pick; %线性插值,编码结果以实数向量存入ret中

flag=test(lenchrom,bound,ret); %检验染色体的可行性 end

function ret=Cross(pcross,lenchrom,chrom,sizepop,bound) %本函数完成交叉操作

% pcorss input : 交叉概率

% lenchrom input : 染色体的长度 % chrom input : 染色体群

% sizepop input : 种群规模

% ret output : 交叉后的染色体

for i=1:sizepop %每一轮for循环中,可能会进行一次交叉操作,染色体是随机选择的,交叉位置也是随机选择的,%但该轮for循环中是否进行交叉操作则由交叉概率决定(continue控制)

% 随机选择两个染色体进行交叉 pick=rand(1,2); while prod(pick)==0 pick=rand(1,2); end

index=ceil(pick.*sizepop); % 交叉概率决定是否进行交叉 pick=rand; while pick==0 pick=rand; end

if pick>pcross continue; end flag=0;

while flag==0

% 随机选择交叉位 pick=rand; while pick==0 pick=rand; end

pos=ceil(pick.*sum(lenchrom)); %随机选择进行交叉的位置,即选择第几个变量进行交叉,注意:两个染色体交叉的位置相同 pick=rand; %交叉开始 v1=chrom(index(1),pos); v2=chrom(index(2),pos);

chrom(index(1),pos)=pick*v2+(1-pick)*v1;

chrom(index(2),pos)=pick*v1+(1-pick)*v2; %交叉结束

flag1=test(lenchrom,bound,chrom(index(1),:)); %检验染色体1的可行性 flag2=test(lenchrom,bound,chrom(index(2),:)); %检验染色体2的可行性 if flag1*flag2==0 flag=0; else flag=1;

end %如果两个染色体不是都可行,则重新交叉 end end

ret=chrom; data

for i=1:4000

input(i,:)=10*rand(1,2)-5;

output(i)=input(i,1)^2+input(i,2)^2; end

output=output';

save data input output fun

function fitness = fun(x)

% 函数功能:计算该个体对应适应度值 % x input 个体

% fitness output 个体适应度值 %

load data net inputps outputps

%数据归一化 x=x';

inputn_test=mapminmax('apply',x,inputps);

%网络预测输出

an=sim(net,inputn_test);

%网络输出反归一化

fitness=mapminmax('reverse',an,outputps);

genetic

web browser http://www.ilovematlab.cn/thread-61659-1-1.html %% 清空环境变量 clc clear

%% 初始化遗传算法参数 %初始化参数

maxgen=100; %进化代数,即迭代次数 sizepop=20; %种群规模

pcross=[0.4]; %交叉概率选择,0和1之间 pmutation=[0.2]; %变异概率选择,0和1之间

搜索更多关于: matlab30个案例分析案例4代码 的文档
matlab30个案例分析案例4代码.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c26i7n2kyu88njyz27jf5_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top