四、解答题(本题共 12 分,第 24 题 8,第 25 题 6 分)
24.解:(1)点B的坐标为(2,0),点C的坐标(2,4); ············································ 2分
直线 EC 的解析式为
4 4
y ?x ?, 3 3
(2)直线y=5x+5 与x 轴交于点E(-1,0),与y轴交于点F(0,5). ························· 4分
4 4
y ?x ?, 3 3 4
EC 与 y 轴交于点 H(0, ),
3
11
所以 FH= .
3 1 11
所以 SEFC= EH ? ( x ?x ) = . ························································· 8分
△ E C 2 2直线 EC 的解析式为
25.(本题 5 分)
八年级期末 数学试卷 第 11页(共 12页)
本题答案不唯一,如: 作法:如图 3,
(1) 延长 BA至 B’,使得 AB’=AB;
(2) 分别以点 B,点 B’ 为圆心,BB’长为半径画弧,
两弧交于点 C;
(3) 连接 AC,BC.
△ABC就是所求的直角三角形. ······················· 1分
证明:连接 B’C.
由作图可知, BC= BB’ = B’C,AB’=AB, ∴ △ABC 是等边三角形(等边三角形定义). ∴ ∠B=60° (等边三角形每个内角都等于 60°) .
∴ AC⊥BB’于点 E(等边三角形一边上的中线与这边上的高相互重合) .
∴ △ABC就是所求作的直角三角形. ······················································· 6分
四、解答题(本题共 8 分)
26.(1)解:在等边三角形△ACD中,
∠CAD = ∠ADC =60 °,AD=AC.
∵ E 为 AC 的中点,
1
∴∠ADE= ∠ADC=30° . ······························································· 2分
2 ∵AB=AC, ∴AD=AB.
∵ ∠BAD = ∠BAC+∠CAD=160°. ∴ ∠ADB=∠ABD=10°.
∴
∠ BDF= ∠ADF -∠ADB=20° . ····················································· 4 分
(2)①补全图形,如图所示. ··············································································· 5分
②证明:连接 AN.
∵ CM 平分∠ACB,
∴ 设 ∠ ACM = ∠ BCM = α . ∵ AB=AC, ∴
∠ABC=∠ACB=2α . 在等边三角形△ACD 中, ∵ E 为 AC 的中点,
八年级期末 数学试卷 第 12页(共 12页)
∴DN⊥AC.
∴ NA = NC .
∴ ∠NAC = ∠NCA = α.
∴ ∠DAN =60 °+ α.
在△ABN 和△ADN 中,
?AB ?AD, ?
∵ ??BN ?DN,
?AN?AN, ?∴ △ABN ≌△ADN.
∴ ∠ABN=∠ADN=30°,∠BAN=∠DAN=60°+α.
∴ ∠BAC=60°+2α.
在△ABC 中,∠ BAC + ∠ ACB +∠ ABC =180° ,
∴ 60°+
2α+2α+2α=180°.
∴α=20°.
∴ ∠NBC=∠ABC-∠ABN=10°.
∴ ∠MNB=∠NBC+∠NCB=30°.
∴ ∠MNB=∠MBN.
∴ MB= MN. ························································································ 8分
八年级期末 数学试卷 第 13页(共 12页)
相关推荐: