¸ß¼¶ÓïÑÔ³ÌÐòÉè¼Æ×ÛºÏÁ·Ï°Ò» ѧºÅ£º ÐÕÃû£º
Ò»¡¢Ñ¡ÔñÌâ
1¡¢ Ò»¸öC³ÌÐòÓÉÈô¸É¸öCº¯Êý×é³É£¬¸÷¸öº¯ÊýÔÚÎļþÖеÄλÖÃ˳ÐòΪ£º£¨ £©
A¡¢ ÈÎÒâ B¡¢ µÚÒ»¸öº¯Êý±ØÐëÊÇÖ÷º¯Êý£¬ÆäËûº¯ÊýÈÎÒâ C¡¢ ±ØÐëÍêÈ«°´ÕÕÖ´ÐеÄ˳ÐòÅÅÁÐ
D¡¢ ÆäËûº¯Êý¿ÉÒÔÈÎÒ⣬Ö÷º¯Êý±ØÐëÔÚ×îºó
2¡¢ ÏÂÁÐËĸöÐðÊöÖУ¬ÕýÈ·µÄÊÇ£º£¨ £©
A¡¢ C³ÌÐòÖеÄËùÓÐ×Öĸ¶¼±ØÐëСд
B¡¢ C³ÌÐòÖеĹؼü×Ö±ØÐëСд£¬ÆäËû±êʾ·û²»Çø·Ö´óСд C¡¢ C³ÌÐòÖеÄËùÓÐ×Öĸ¶¼²»Çø·Ö´óСд D¡¢ CÓïÑÔÖеÄËùÓйؼü×Ö±ØÐëСд
3¡¢ ÏÂÁÐËĸöÐðÊöÖУ¬´íÎóµÄÊÇ£º£¨ £©
A¡¢ Ò»¸öCÔ´³ÌÐò±ØÐëÓÐÇÒÖ»ÄÜÓÐÒ»¸öÖ÷º¯Êý B¡¢ Ò»¸öCÔ´³ÌÐò¿ÉÒÔÓжà¸öº¯Êý
C¡¢ ÔÚCÔ´³ÌÐòÖÐ×¢ÊÍ˵Ã÷±ØÐëλÓÚÓï¾äÖ®ºó D¡¢ CÔ´³ÌÐòµÄ»ù±¾½á¹¹ÊǺ¯Êý
4¡¢ ÏÂÃæ²»ÊÇCÓïÑԺϷ¨±êʶ·ûµÄÊÇ£º£¨ £©
A¡¢abc B¡¢5n C¡¢_4m D¡¢x3
5¡¢ ÒÔÏÂÐðÊö²»ÕýÈ·µÄÊÇ£º£¨ £©
A. ·ÖºÅÊÇCÓï¾äµÄ±ØÒª×é³É²¿·Ö B. C³ÌÐòµÄ×¢ÊÍ¿ÉÒÔдÔÚÓï¾äµÄºóÃæ C. º¯ÊýÊÇC³ÌÐòµÄ»ù±¾µ¥Î» D. Ö÷º¯ÊýµÄÃû×Ö²»Ò»¶¨·ÇÓÃmainÀ´±íʾ
6¡¢ CÓïÑÔÖÐÔÊÐíµÄ»ù±¾Êý¾ÝÀàÐͰüÀ¨£º£¨ £©
A. ÕûÐÍ¡¢ÊµÐÍ¡¢Âß¼ÐÍ B. ÕûÐÍ¡¢ÊµÐÍ¡¢×Ö·ûÐÍ
C. ÕûÐÍ¡¢×Ö·ûÐÍ¡¢Âß¼ÐÍ D. ÕûÐÍ¡¢ÊµÐÍ¡¢Âß¼ÐÍ¡¢×Ö·ûÐÍ
7¡¢ CÓïÑÔÖÐÄÜÓð˽øÖƱíʾµÄÊý¾ÝÀàÐÍΪ£º£¨ £©
A¡¢×Ö·ûÐÍ¡¢ÕûÐÍ B¡¢ÕûÐΡ¢ÊµÐÍ
C¡¢×Ö·ûÐÍ¡¢ÊµÐÍ¡¢Ë«¾«¶ÈÐÍ D¡¢×Ö·ûÐÍ¡¢ÕûÐÍ¡¢ÊµÐÍ¡¢Ë«¾«¶ÈÐÍ
8¡¢ ÏÂÁÐÊôÓÚCÓïÑԺϷ¨µÄ×Ö·û³£ÊýÊÇ£º£¨ £©
A¡¢¡¯\\97¡¯ B¡¢¡±A¡± C¡¢¡¯\\t¡¯ D¡¢¡±\\0¡±
9¡¢ ÔÚCÓïÑÔ£¨VC»·¾³£©ÖУ¬5ÖÖ»ù±¾Êý¾ÝÀàÐ͵Ĵ洢¿Õ¼ä³¤¶ÈµÄÅÅÁÐ˳ÐòΪ£º£¨ £©
A¡¢char 1 ¸ß¼¶ÓïÑÔ³ÌÐòÉè¼Æ×ÛºÏÁ·Ï°Ò» ѧºÅ£º ÐÕÃû£º printf(¡°%d,%c\\n¡±,c2-c1,c2-¡®a¡¯+¡¯A¡¯);ÔòÊä³ö½á¹ûÊÇ£º£¨ £© A¡¢2£¬M B¡¢3£¬E C¡¢2£¬E D¡¢Êä³öÏîÓëÏàÓ¦µÄ¸ñʽ¿ØÖƲ»Ò»Ö£¬Êä³ö½á¹û²»È·¶¨ 11¡¢ ÒÔϺϷ¨µÄ¸³ÖµÓï¾äÊÇ£º£¨ £© A¡¢x=y=100 B¡¢d--; C¡¢x + y D¡¢c = int(a+b); 12¡¢ ÔÚÒÔÏÂÒ»×éÔËËã·ûÖУ¬ÓÅÏȼ¶×î¸ßµÄÊÇ£º£¨ £© A¡¢<= B¡¢== C¡¢% D¡¢&& 13¡¢ ÏÂÁÐÄÜÕýÈ·±íʾa¡Ý10»òa¡Ü0µÄ¹ØÏµ±í´ïʽÊÇ£º£¨ £© A¡¢a>=10 or a<=0 B¡¢a<=10 || a>=0 C¡¢a>=10 || a<=0 D¡¢a>=10 && a<=0 14¡¢ ÏÂÁÐÖ»Óе±ÕûÊýxÎªÆæÊýʱ£¬ÆäֵΪ¡°Õ桱µÄ±í´ïʽÊÇ£º£¨ £© A¡¢x%2==0 B¡¢!(x%2==0) C¡¢(x-x/2*2)==0 D¡¢!(x%2) 15¡¢ ÉèaΪÕûÐͱäÁ¿£¬²»ÄÜÕýÈ·±í´ïÊýѧ¹ØÏµ10=15) C¡¢a>10 && a<15 D¡¢!(a<=10) && !(a>=15) 16¡¢ ÒÑÖªx=43, ch=¡¯A¡¯£¬y=0£»Ôò±í´ïʽ£¨x>=y&&ch<¡¯B¡¯&&!y£©µÄÖµÊÇ£º£¨ £©A¡¢0 B¡¢Óï·¨´í C¡¢1 D¡¢¡°¼Ù¡± 17¡¢ ±í´ïʽ17%4 /8µÄֵΪ£º£¨ £© A¡¢0 B¡¢1 C¡¢2 D¡¢3 18¡¢ Ò»¸ö¿ÉÖ´ÐеÄC³ÌÐòµÄ¿ªÊ¼Ö´ÐеãÊÇ£º£¨ £© A. ³ÌÐòÖеĵÚÒ»¸öÓï¾ä B. °üº¬ÎļþÖеĵÚÒ»¸öº¯Êý C. ÃûΪmainµÄº¯Êý D. ³ÌÐòÖеĵÚÒ»¸öº¯Êý 19¡¢ ×é³É£ÃÓï¾äµÄÒ»¸ö±Ø²»¿ÉÉٵķûºÅÊÇ£º£¨ £© A. ¶ººÅ B. ÒýºÅ C. ðºÅ D. ·ÖºÅ 20¡¢ Èô½«int¡¢long¡¢floatµÈÀàÐ͵ÄÊý¾Ý½øÐлìºÏÔËË㣬Æä½á¹ûµÄÊý¾ÝÀàÐÍÊÇ£º£¨ A. int B. long C. float D. double 21¡¢ ÏÂÊöÊÇCÓïÑÔÖÐÓйرäÁ¿¶¨ÒåµÄ¼¸¸ö˵·¨£¬ÕýÈ·µÄÊÇ£º£¨ £© A. ±äÁ¿¿ÉÒÔ²»¶¨ÒåÖ±½ÓʹÓà B. Ò»¸ö˵Ã÷Óï¾äÖ»Äܶ¨ÒåÒ»¸ö±äÁ¿ C. ¼¸¸ö²»Í¬ÀàÐ͵ıäÁ¿¿ÉÔÚͬһÓï¾äÖж¨Òå D. ±äÁ¿¿ÉÒÔÔÚ¶¨Òåʱ½øÐгõ窻¯ 22¡¢ Óëx * = y + zµÈ¼ÛµÄ¸³Öµ±í´ïʽÊÇ£º£¨ £© 2 £© ¸ß¼¶ÓïÑÔ³ÌÐòÉè¼Æ×ÛºÏÁ·Ï°Ò» ѧºÅ£º ÐÕÃû£º A. x = y + z B. x = x * y + z C. x = x * (y + z) D. x = x + y * z 23¡¢ µ±´úµç×Ó¼ÆËã»úÄܹ»×Ô¶¯µØ´¦ÀíÖ¸¶¨µÄÎÊÌâÊÇÒòΪ£º£¨ £© A£®¼ÆËã»úÊǵ綯µÄ B£®Óнâ¾ö¸ÃÎÊÌâµÄ¼ÆËã»ú³ÌÐò C£®ÊÂÏÈ´æ´¢Á˽â¾ö¸ÃÎÊÌâµÄ³ÌÐò D£®ÒÔÉ϶¼²»ÊÇ 24¡¢ ÒÔÏÂÐðÊöÖÐ×î׼ȷµÄÊÇ£º£¨ £© A£®¼ÆËã»ú³ÌÐòÊÇ´¦ÀíijһÎÊÌâËùÓÐÖ¸ÁîµÄ¼¯ºÏ B£®¼ÆËã»ú³ÌÐòÊÇ´¦ÀíijһÎÊÌâËùÓõ½µÄËùÓÐÊý¾ÝµÄ¼¯ºÏ C£®¼ÆËã»ú³ÌÐòÊÇ´¦ÀíijһÎÊÌâµÄËùÓÐÖ¸Áî¼°ÆäÊý¾ÝµÄ¼¯ºÏ D£®¼ÆËã»ú³ÌÐòÊÇ´¦ÀíijһÎÊÌâµÄËùÓÐÖ¸Áî¼°ÆäÊý¾ÝµÄÓÐÐò¼¯ºÏ 25¡¢ Ŀǰ±àд¼ÆËã»ú³ÌÐòÒ»°ã²ÉÓõÄÊÇ£º£¨ £© A£®»úÆ÷ÓïÑÔ B£®»ã±àÓïÑÔ C£®¸ß¼¶ÓïÑÔ D£®Ó¢Óï 26¡¢ Éè¼ÆÒ»¸ö¼ÆËã»ú³ÌÐò×î»ù±¾µÄ¹¤×÷ÊÇ£º£¨ £© A£®Öƶ¨ÕýÈ·µÄËã·¨ B£®Ñ¡ÔñºÏÀíµÄÊý¾Ý½á¹¹ C£®Öƶ¨ÕýÈ·µÄËã·¨ºÍÑ¡ÔñºÏÀíµÄÊý¾Ý½á¹¹ D£®ÒÔÉ϶¼²»ÊÇ 27¡¢ Ëã·¨¾ßÓÐÎå¸öÌØÐÔ,ÒÔÏÂÑ¡ÏîÖв»ÊôÓÚËã·¨ÌØÐÔµÄÊÇ£º£¨ £© A£®ÓÐÇîÐÔ B£®¼ò½àÐÔ C£®¿ÉÐÐÐÔ D£®È·¶¨ÐÔ 28¡¢ ÏÂÊöÄÄÒ»¸ö²»Êǽṹ»¯³ÌÐò»ù±¾½á¹¹£º£¨ £© A£®Ë³Ðò B£®Ñ¡Ôñ C£®Ñ»· D£®Ç¶Ì× 29¡¢ CÓïÑÔÊÇÒ»ÖÖ£º£¨ £© A£®»úÆ÷ÓïÑÔ B£®»ã±àÓïÑÔ C£®¸ß¼¶ÓïÑÔ D£®ÒÔÉ϶¼²»ÊÇ 30¡¢ CÓïÑÔÔ´³ÌÐòµÄÀ©Õ¹ÃûΪ£º£¨ £© A£®.exe B£®.c C£®.obj D£®.cpp 31¡¢ C³ÌÐò±àÒë¡¢Á¬½Óºó×îÖÕ²úÉú(¼´¼ÆËã»úÖ´ÐÐ)µÄÎļþµÄÀ©Õ¹ÃûΪ( ) A£®.exe B£®.c C£®.obj D£®.cpp 32¡¢ ¹¹³ÉCÓïÑÔÔ´³ÌÐòµÄ»ù±¾µ¥Î»ÊÇ£º£¨ £© A£®×Ó³ÌÐò B£®¹ý³Ì C£®Îı¾ D£®º¯Êý 33¡¢ ÏÂÁÐÐðÊöÕýÈ·µÄÊÇ£º£¨ £© A£®CÓïÑÔÔ´³ÌÐò¿ÉÒÔÖ±½ÓÔÚDOS»·¾³ÖÐÔËÐÐ B£®±àÒëCÓïÑÔÔ´³ÌÐòµÃµ½µÄÄ¿±êÎļþ¿ÉÒÔÖ±½ÓÔÚDOS»·¾³ÖÐÔËÐÐ C£®CÓïÑÔÔ´³ÌÐò¾¹ý±àÒë¡¢Á¬½ÓµÃµ½µÄ¿ÉÖ´ÐгÌÐò¿ÉÒÔÖ±½ÓÔÚDOS»·¾³ÖÐÔËÐÐ D£®CÓïÑÔÔ´³ÌÐò¿ÉÒÔÖ±½ÓÔÚVC++»·¾³ÖÐÔËÐÐ 34¡¢ ijC³ÌÐòÓÉÒ»¸öÖ÷º¯Êýmain()ºÍÒ»¸ö×Ô¶¨Ò庯Êýmax()×é³É£¬Ôò¸Ã³ÌÐò£º£¨ £© 3 ¸ß¼¶ÓïÑÔ³ÌÐòÉè¼Æ×ÛºÏÁ·Ï°Ò» ѧºÅ£º ÐÕÃû£º A£®Ð´ÔÚÇ°ÃæµÄº¯ÊýÏÈ¿ªÊ¼Ö´ÐÐ B£®×ÜÊÇ´Ómain()º¯Êý¿ªÊ¼Ö´ÐÐ C£®×ÜÊÇ´Ómax()º¯Êý¿ªÊ¼Ö´ÐÐ D£®Ð´ÔÚºóÃæµÄº¯ÊýÏÈ¿ªÊ¼Ö´ÐÐ 35¡¢ ÒÔÏÂÐðÊö²»ÕýÈ·µÄÊÇ£º£¨ £© A£®·ÖºÅÊÇCÓï¾äµÄ±ØÒª×é³É²¿·Ö B£®C³ÌÐòµÄ×¢ÊÍ¿ÉÒÔдÔÚÓï¾äµÄºóÃæ C£®º¯ÊýÊÇC³ÌÐòµÄ»ù±¾µ¥Î» D£®Ö÷º¯ÊýµÄÃû×Ö²»Ò»¶¨ÓÃmian±íʾ 36¡¢ ÒÔÏÂΪCÓï¾äµÄÊÇ£º£¨ £© A£®a=8 B£®a++£» C£®if(a>8) D£® #include A£®a=1£¬b=2 B£®++a; C£®a=a+1=5 D£®y=int(a)£» ¶þ¡¢ÅжÏÌâ 1. ( T )CÓïÑÔÊÇÑϸñÇø·Ö´óдºÍСдµÄ£¬Òò´ËÖ÷º¯Êý²»ÄÜд³Émain()ÒÔÍâµÄÆäËûÐÎʽ¡£ 2. ( F )CÓïÑÔ³ÌÐòÊÇ´ÓÔ´ÎļþµÄµÚÒ»ÌõÓï¾ä¿ªÊ¼Ö´Ðеġ£ 3. ( F )CÓïÑÔ¶ÔÆäÊý¾ÝÔÚÄÚ´æÖÐËùÕ¼ÓõÄʵ¼Ê×Ö½ÚÊýÊÇÓÐÃ÷È·¹æ¶¨µÄ¡£ 4. ( F )CÓïÑÔÖÐ/*..*/Ö®¼äµÄ×¢ÊÍÄÚÈÝÊDz»ÄÜ¿çÐеġ£ 5. ( F )CÓïÑÔÖжà¸öÒÔ¡°;¡±½áÊøµÄÓï¾ä²»ÄÜ·ÅÔÚͬһÐС£ 6. ( F )±äÁ¿ËµÃ÷Óï¾äint a=b=c=23;ÊÇÕýÈ·µÄ¡£ 7. ( F )×Ö·ûÐÍÊý¾Ý²»¿ÉÒÔºÍÕûÊýÊý¾ÝÒ»Æð½øÐÐËãÊõÔËËã¡£ 8. ( T )CÓïÑÔÖÐÇ¿ÖÆÀàÐÍת»»²»»á¸Ä±äÔ±äÁ¿µÄÔÓÐÊý¾ÝÀàÐÍ¡£ 9. ( F )±í´ïʽj=-i++ºÍj=-(i++)²»ÏàµÈ 10. ( T )³ÌÐò¶Î£ºi=8,j=10;printf(\Æä½á¹û9,10,9,10. 11. ( F )CÓïÑÔÖзÅÔÚ¡°¡±Ö®¼äµÄÄÚÈݶ¼±»ÊÓΪ×Ö·û´®µÄÒ»¸ö¹¹³É²¿·Ö£¬¶¼¿ÉÒÔÔÚÆÁÄ»ÉÏ ÔÑùÏÔʾ¡£ 12. ( T )¼ÆËã»ú³ÌÐòµÄÖ´Ðйý³Ìʵ¼ÊÉÏÊǶԳÌÐòËù±í´ïµÄÊý¾Ý½øÐд¦ÀíµÄ¹ý³Ì¡£ 13. ( T )Ŀǰ³ÌÐòÉè¼ÆµÄÀíÄîÒѾ´Ó¡°ÃæÏò¹ý³ÌµÄ³ÌÐòÉè¼Æ¡±Ïò¡°ÃæÏò¶ÔÏóµÄ³ÌÐòÉè¼Æ¡± ·½Ãæ×ª±ä¡£ 14. ( T )ÓÐÈËÔøÌá³ö£º¼ÆËã»ú³ÌÐò£½Ëã·¨£«Êý¾Ý½á¹¹¡£ 15. ( T )ÔÚ³ÌÐòÉè¼ÆÖÐÌáµ½µÄËã·¨¾ÍÊÇ¡°½â¾öÎÊÌâµÄ·½·¨ºÍ²½Ö衱 16. ( T )ÔÚ³ÌÐòÉè¼ÆÖÐÌáµ½µÄÊý¾Ý½á¹¹¾ÍÊÇ¡°³ÌÐò´¦ÀíµÄ¶ÔÏóµÄ±íʾ·½·¨¡± 17. ( T )¼ÆËã»ú³ÌÐòµÄËã·¨¾ÍÊǽâ¾ö¡°×öʲô¡±ºÍ¡°Ôõô×ö¡±µÄÎÊÌâ¡£ 18. ( T )½á¹¹»¯³ÌÐòÉè¼ÆµÄ»ù±¾ÀíÄîÊÇ£º½«Ò»¸ö½Ï´óµÄÎÊÌâϸ·Ö³ÉÈô¸É¸ö½ÏСÎÊÌâµÄ×éºÏ¡£ 19. ( F )C³ÌÐòµÄÖ´ÐÐÊÇ´Ó³ÌÐòµÄµÚÒ»ÐпªÊ¼£¬Ò»Ö±µ½³ÌÐòµÄ×îºóÒ»ÐнáÊø¡£ 20. ( T )C³ÌÐòµÄÖ´ÐÐÊÇ´ÓÖ÷º¯ÊýµÄµÚÒ»ÐпªÊ¼£¬Ò»Ö±µ½Ö÷º¯ÊýµÄ×îºóÒ»ÐнáÊø¡£ 21. (T)Éèx¡¢t¾ùΪintÐͱäÁ¿£¬ÔòÖ´ÐÐÓï¾ä\ºó£¬tµÄֵΪ0 22. ( T )ÈôaºÍbÀàÐÍÏàͬ,ÔÚ¼ÆËãÁ˸³Öµ±í´ïʽa=bºóbÖеÄÖµ½«·ÅÈëaÖÐ,¶øbÖеÄÖµ ²»±ä 23. ( T )ÔÚC³ÌÐòÖÐ,%ÊÇÖ»ÄÜÓÃÓÚÕûÊýÔËËãµÄÔËËã·û 24. ( T )ÔÚCÓïÑÔÖУ¬Âß¼¡°Õ桱µÈ¼ÛÓÚ²»µÈÓÚ0µÄÊý 25. ( F )CÓïÑÔÖÐ×Ö·ûÐÍ¡¢ÕûÐÍ¡¢ÊµÐͶ¼ÄÜÓð˽øÖƱíʾ 26. ( T )±äÁ¿µÄÈýÒªËØÊÇ£º±äÁ¿Ãû¡¢±äÁ¿ÀàÐÍ¡¢±äÁ¿µÄÖµ¡£ ÊéÉϱػáµÄÌ⣺¿ÎºóÌ⣺µÚÈýÕÂP83£4£¬6£¬7 4
Ïà¹ØÍÆ¼ö£º