在区间(1,??)内,f'(x)?0,
故f(x)的单调递增区间为(?2,1),单调递减区间为(??,?2),(1,??). (2)令g(x)?6e?f(x), 由(1)可知g(x)在区间(0,1)内单调递减, 在区间(1,??)内单调递增,
g(x)?g(1)?6e?5e?1e.(*) 令h(x)?x2?3x?3?xlnx, 则h'(x)?2x?2?lnx, 设s(x)?h'(x),则s'(x)?2?1x?0, 故h'(x)?0仅有一解为x?1, 在区间(0,1)内,h'(x)?0, 在区间(1,??)内,h'(x)?0, ∴h(x)?h(1)?1.(**)
由(*)(**)式相乘,得g(x)?h(x)?1e, 即??6?f(x)??21?e??(x?3x?3?xlnx)?e(当x?1时,取等号). 22.解:(1)由题知,直线l经过定点(0,2),
圆C的直角坐标方程为(x?2)2?y2?4,圆心为(2,0), ∴直线l的斜率为k??1, 故直线l的倾斜角为
3?4. (2)将??x?tcos??(t为参数)代入22?y?2?tsin(x?2)?y?4,
得t2?4t(sin??cos?)?4?0,
11
当
3?4???5?6时,??16(sin??cos?)2?16?0, 设A,B两点对应的参数分别为t1,t2, 则t1?t2??4(sin??cos?),t1?t2?4,
∴PA?PB?t1?t2??(t1?t2)?4(sin??cos?)?42sin???????4??, ∵
??2????4?712, ∴6?24?sin???????4???1, ∴23?2?PA?PB?42,
故PA?PB的取值范围为[23?2,42]. 23.解:(1)∵函数f(x)的对称轴为x?1, ∴m?0,
??2x?2,x?∴f(x)?x?x?2??0?2,0?x?2,
??2x?2,x?2由f(x)?x?2,得??x?0x?2?x?2
??2或??0?x?2或??2?x?2?x?2?2x?2?x?2.
解得x?0或x?4,
故不等式F(x)?x?2的解集为(??,0][4,??). (2)由绝对值不等式的性质, 可知x?2?x?(x?2)?x?2, ∴f(x)min?M?2,∴a?b?2, ∴
12a?2b?12a?42b?1?14?1?2b8a?1924??2a?2b??(2a?2b)?4??1?4?2a?2b???4?(5?4)?4(当且仅当a?3, 12
4时取等号). 3129??. 即
b?2ab
413
14
15
相关推荐: