第一范文网 - 专业文章范例文档资料分享平台

2019年黑龙江省大庆市中考数学试题(含答案解析)

来源:用户分享 时间:2025/6/1 14:17:16 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

∴∠ABQ=30°, ∴∠ABC=90°. ∵AB=BC=10, ∴AC=

=10

≈14.1.

答:A、C两地之间的距离为14.1km. (2)由(1)知,△ABC为等腰直角三角形, ∴∠BAC=45°,

∴∠CAM=60°﹣45°=15°, ∴C港在A港北偏东15°的方向上. 23.(1)①m=20÷20%=100, ②n=100﹣10﹣40﹣20﹣10=20, ③c=

=144°;

故答案为100,20,144

(2)被抽取同学的平均体重为:

(40×10+45×20+50×40+55×20+60×10)=50(千克).答:被抽取同学的平均体重为50千克. (3)1000×30%=300(人).

答:七年级学生体重低于47.5千克的学生大约有300人. 24.(1)∵A(m,2m)在反比例函数图象上, ∴2m=,

∴m=1, ∴A(1,2).

又∵A(1,2)在一次函数y=kx﹣1的图象上, ∴2=k﹣1,即k=3,

∴一次函数的表达式为:y=3x﹣1. (2)由

解得

∴B(﹣,﹣3)

13

∴由图象知满足不等式<kx﹣1的x的取值范围为﹣<x<0或x>1.

25.(1)证明∵四边形ABCD是矩形, ∴AB∥CD, ∴∠MAB=∠NCD. 在△ABM和△CDN中,

∴△ABM≌△CDN(SAS);

(2)如图,连接EF,交AC于点O. 在△AEO和△CFO中,

∴△AEO≌△CFO(AAS), ∴EO=FO,AO=CO, ∴O为EF、AC中点.

∵∠EGF=90°,OG=EF=, ∴AG=OA﹣OG=1或AG=OA+OG=4, ∴AG的长为1或4.

26.(1)动点D运动x秒后,BD=2x. 又∵AB=8,∴AD=8﹣2x. ∵DE∥BC, ∴,

14

∴y关于x的函数关系式为y=(0<x<4).

(2)S△BDE==

(0<x<4).

时,S2

△BDE最大,最大值为6cm.

27.(1)证明∵D是弦AC中点, ∴OD⊥AC,

∴PD是AC的中垂线, ∴PA=PC, ∴∠PAC=∠PCA. ∵AB是⊙O的直径, ∴∠ACB=90°, ∴∠CAB+∠CBA=90°. 又∵∠PCA=∠ABC, ∴∠PCA+∠CAB=90°,

∴∠CAB+∠PAC=90°,即AB⊥PA, ∴PA是⊙O的切线;

(2)证明:由(1)知∠ODA=∠OAP=90°, ∴Rt△AOD∽Rt△POA, ∴

∴OA2

=OP?OD. 又OA=EF,

∴EF2

=OP?OD,即EF2

=4OP?OD.

(3)在Rt△ADF中,设AD=a,则DF=3a.

OD=BC=4,AO=OF=3a﹣4.

∵OD2

+AD2

=AO2

,即42

+a2

=(3a﹣4)2

,解得a=

15

∴DE=OE﹣OD=3a﹣8=.

28.(1)抛物线的对称轴是x=2,且过点A(﹣1,0)点,∴∴抛物线的函数表达式为:y=x﹣4x﹣5; (2)y=x﹣4x﹣5=(x﹣2)﹣9,

2

22

,解得:,

则x轴下方图象翻折后得到的部分函数解析式为:y=﹣(x﹣2)+9=﹣x+4x+5,(﹣122

<x<5),其顶点为(2,9).

∵新图象与直线y=t恒有四个交点,∴0<t<9, 设E(x1,y1),F(x2,y2). 由

解得:x=2

∵以EF为直径的圆过点Q(2,1), ∴EF=2|t﹣1|=x2﹣x1, 即2

=2|t﹣1|,解得t=

又∵0<t<9, ∴t的值为

(3)①当m、n在函数对称轴左侧时,

m≤n≤2,

由题意得:x=m时,y≤7,x=n时,y≥m,

16

2019年黑龙江省大庆市中考数学试题(含答案解析).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c2a4np3iqet41z4g1sgcd5uqa87qzsz016qw_4.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top